scholarly journals A 1D Analytical Model for Slag Infiltration during Continuous Casting of Steel under Non-Sinusoidal Mold Oscillation

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1389
Author(s):  
Hyunjin Yang

A 1D analytical model for slag infiltration during continuous casting of steel is developed to investigate the slag behavior in the mold–strand gap. The superposition principle and Fourier expansion are applied to obtain the analytical solution for transient slag flow under arbitrary mold oscillation including non-sinusoidal oscillation mode. The validated model using literature data partially explains several controversies such as slope of slag film channel, mechanism of non-sinusoidal mold oscillation, and timing of slag infiltration. The model shows that a converging slag film into the casting direction is required to open the mold–strand gap if compression is applied in between. Also, model calculations imply that higher slag consumption is achievable from non-sinusoidal mold oscillation by means of the increase of film thickness through longer positive pressure with higher peak pressure. The model demonstrates a time difference between slag flow and pressure near the meniscus and the discrepancy in timing of infiltration between previous works is attributed to the mismatch. The model provides a concise but reliable tool to understand slag infiltration behavior and design mold oscillation settings.

1991 ◽  
Vol 31 (3) ◽  
pp. 254-261 ◽  
Author(s):  
Mikio Suzuki ◽  
Hideaki Mizukami ◽  
Toru Kitagawa ◽  
Kiminari Kawakami ◽  
Shigetaka Uchida ◽  
...  

1992 ◽  
Vol 78 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Mikio SUZUKI ◽  
Shinobu MIYAHARA ◽  
Toru KITAGAWA ◽  
Shigetaka UCHIDA ◽  
Takashi MORI ◽  
...  

2017 ◽  
Vol 4 (6) ◽  
pp. 170062 ◽  
Author(s):  
M. Vynnycky ◽  
S. Saleem ◽  
K. M. Devine ◽  
B. J. Florio ◽  
S. L. Mitchell ◽  
...  

Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains.


2011 ◽  
Vol 66-68 ◽  
pp. 185-188
Author(s):  
Hong Ming Wang ◽  
Ting Wang Zhang ◽  
Yong Qi Yan ◽  
Bang Min Song ◽  
Gui Rong Li

According to the rule of non-sinusoidal oscillation of continuous casting mold, a mathematical model was established to study the effects of oscillation parameters on the consumption rate of mold flux. The results indicated that the mold flux consumption rate is remarkably affected by the non-sinusoidal factor. This proves that the non-sinusoidal oscillation of mold contributes to increase the flux consumption. Moreover, the amplitude and frequency of mold oscillation have effects on mold flux consumption rate. The non-sinusoidal oscillation parameters must be optimized.


Sign in / Sign up

Export Citation Format

Share Document