scholarly journals Variable Speed Limit Control Method of Freeway Mainline in Intelligent Connected Environment

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xingju Wang ◽  
Rongqun Zhang ◽  
Yang Gou ◽  
Jiayu Liu ◽  
Lin Zhao ◽  
...  

Freeway is an important component of transportation system. Bottleneck areas on freeway reduce driving safety and traffic efficiency. The development of intelligent connected technology provides a new idea for traffic management. In order to alleviate traffic congestion on the freeway bottleneck area, this paper proposes a variable speed limit (VSL) control method in intelligent connected environment. In this paper, the METANET model is improved by combining intelligent connected environment and VSL control theory. The total traffic capacity (TTC), total travel time (TTT), and total speed difference (TSD) are used to build multiobjective function. The microsimulation at SUMO by using the data from PeMS is employed as a case study to validate the proposed model. The results show that the VSL online control method in intelligent connected environment has better control effect. And the improvement is more obvious with increasing penetration rate of intelligent connected vehicle (ICV).

2019 ◽  
Vol 2 (2) ◽  
pp. 33-40
Author(s):  
Jia Li ◽  
Wenxiang Xu ◽  
Xiaohua Zhao

Purpose Connected vehicle-based variable speed limit (CV-VSL) systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility conditions suddenly occur. The purpose of the speed limit is to make the driver's driving behavior more consistent, so as to improve traffic safety and relieve traffic congestion. The on-road dynamic message sign (DMS) and on-board human–machine interface (HMI) are two types of warning technologies for CV-VSL systems. This study aims to analyze drivers’ acceptance of the two types of warning technologies in fog area and its influencing factors. Design/methodology/approach This study developed DMS and on-board HMI for the CV-VSL system in fog area on a driving simulator. The DMS and on-board HMI provided the driver with weather and speed limit information. In all, 38 participants participated in the experiment and completed questionnaires on drivers’ basic information, perceived usefulness and ease of use of the CV-VSL systems. Technology acceptance model (TAM) was developed to evaluate the drivers’ acceptance of CV-VSL systems. A variance analysis method was used to study the influencing factors of drivers’ acceptance including drivers’ characteristics, technology types and fog density. Findings The results showed that drivers’ acceptance of on-road DMS was significantly higher than that of on-board HMI. The fog density had no significant effect on drivers’ acceptance of on-road DMS or on-board HMI. Drivers’ gender, age, driving year and driving personality were associated with the acceptance of the two CV-VSL technologies differently. This study is beneficial to the functional improvement of on-road DMS, on-board HMI and their market prospects. Originality/value Previous studies have been conducted to evaluate the effectiveness of CV-VSL systems. However, there were rare studies focused on the drivers’ attitude toward using which was also called as acceptance of the CV-VSL systems. Therefore, this research calculated the drivers’ acceptance of two normally used CV-VSL systems including on-road DMS and on-board HMI using TAM. Furthermore, variance analysis was conducted to explore whether the factors such as drivers’ characteristics (gender, age, driving year and driving personality), technology types and fog density affected the drivers’ acceptance of the CV-VSL systems.


2015 ◽  
Vol 7 (2) ◽  
pp. 180
Author(s):  
Lu Pu ◽  
Xiaowei Xu ◽  
Han He ◽  
Hanqing Zhou ◽  
Zhijun Qiu ◽  
...  

2018 ◽  
Vol 29 (02) ◽  
pp. 1850014 ◽  
Author(s):  
Shu-Bin Li ◽  
Dan-Ni Cao ◽  
Wen-Xiu Dang ◽  
Lin Zhang

As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.


2013 ◽  
Vol 96 ◽  
pp. 2129-2137 ◽  
Author(s):  
GU Shao-long ◽  
MA Jun ◽  
WANG Jun-li ◽  
SUI Xiao-qing ◽  
LIU Yan

2018 ◽  
Vol 32 (06) ◽  
pp. 1850077 ◽  
Author(s):  
Shubin Li ◽  
Danni Cao

The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.


Sign in / Sign up

Export Citation Format

Share Document