complex rearrangement
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Benedicte Bang ◽  
Jesper Eisfeldt ◽  
Gisela Barbany ◽  
Arja Harila-Saari ◽  
Mats Heyman ◽  
...  

Genetic analysis of leukemic clones in monozygotic twins with concordant ALL has proved a unique opportunity to gain insight into the molecular phylogenetics of leukemogenesis. Using whole genome sequencing, we characterized constitutional and somatic SNVs/indels and structural variants in a monozygotic twin pair with concordant ETV6-RUNX1 positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In addition, digital PCR (dPCR) was applied to evaluate the presence of and quantify selected somatic variants at birth, diagnosis and remission. A shared somatic complex rearrangement involving chromosomes 11, 12 and 21 with identical fusion sequences in leukemias of both twins offered direct proof of a common clonal origin. The ETV6-RUNX1 fusion detected at diagnosis was found to originate from this complex rearrangement. A shared somatic frameshift deletion in UBA2 was also identified in diagnostic samples. In addition, each leukemia independently acquired analogous deletions of three genes recurrently targeted in BCP-ALLs (ETV6, ATF7IP and RAG1/RAG2) providing evidence of a convergent clonal evolution, only explained by a strong concurrent selective pressure. Quantification of the UBA2 deletion by dPCR surprisingly indicated it persisted in remission. This, for the first time to our knowledge, provided evidence of a UBA2 variant preceding the well-established initiating event ETV6-RUNX1. Further, we suggest the UBA2 deletion exerted a leukemia predisposing effect and that its essential role in SUMOylation, regulating nearly all physiological and pathological cellular processes such as DNA-repair by non-homologous end joining, may hold a mechanistic explanation for the predisposition.


2021 ◽  
Vol 10 (20) ◽  
pp. 4693
Author(s):  
Alessio Martucci ◽  
Doriana Landi ◽  
Massimo Cesareo ◽  
Emiliano Di Carlo ◽  
Giovanni Di Mauro ◽  
...  

There are consolidated data about multiple sclerosis (MS)–dependent retinal neurodegeneration occurring in the optic disk and the macula, although it is unclear whether other retinal regions are affected. Our objective is to evaluate, for the first time, the involvement of the entire retinal posterior pole in patients diagnosed with relapsing remitting multiple sclerosis (RRMS) unaffected by optic neuritis using Spectral Domain–Optical Coherence Tomography (SD–OCT). The study protocol was approved by Tor Vergata Hospital Institutional Ethics Committee (Approval number 107/16), and conforms to the tenets of the Declaration of Helsinki. After a comprehensive neurological and ophthalmological examination, 53 untreated RRMS patients (aged 37.4 ± 10) and 53 matched controls (aged 36.11 ± 12.94) were enrolled. In addition, each patient underwent an examination of the posterior pole using the SD-OCT built-in Spectralis posterior pole scanning protocol. After segmentation, the mean thickness, as well as the thickness of the 64 single regions of interest, were calculated for each retinal layer. No statistically significant difference in terms of average retinal thickness was found between the groups. However, MS patients showed both a significantly thinner ganglion cell layer (p < 0.001), and, although not statistically significant, a thinner inner nuclear layer (p = 0.072) and retinal nerve fiber layer (p = 0.074). In contrast, the retinal pigment epithelium (p = 0.014) and photoreceptor layers p < 0.001) resulted significantly thicker in these patients. Interestingly, the analysis of the region of interest showed that neurodegeneration was non-homogeneously distributed across each layer. This is the first report that suggests a complex rearrangement that affects, layer by layer, the entire retinal posterior pole of RRMS retinas in response to the underlying neurotoxic insult.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. Cameron ◽  
Jonathan Baber ◽  
Charles Shale ◽  
Jose Espejo Valle-Inclan ◽  
Nicolle Besselink ◽  
...  

AbstractGRIDSS2 is the first structural variant caller to explicitly report single breakends—breakpoints in which only one side can be unambiguously determined. By treating single breakends as a fundamental genomic rearrangement signal on par with breakpoints, GRIDSS2 can explain 47% of somatic centromere copy number changes using single breakends to non-centromere sequence. On a cohort of 3782 deeply sequenced metastatic cancers, GRIDSS2 achieves an unprecedented 3.1% false negative rate and 3.3% false discovery rate and identifies a novel 32–100 bp duplication signature. GRIDSS2 simplifies complex rearrangement interpretation through phasing of structural variants with 16% of somatic calls phasable using paired-end sequencing.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1458
Author(s):  
Teresa Maria Garcia ◽  
Sarah Kiener ◽  
Vidhya Jagannathan ◽  
Duncan S. Russell ◽  
Tosso Leeb

We investigated three neonatal Basset Hound littermates with lesions consistent with epidermolysis bullosa (EB), a group of genetic blistering diseases. A clinically normal bitch was bred to her grandfather by artificial insemination. Out of a litter of seven puppies, two affected puppies died and one was euthanized, with these puppies being submitted for diagnostic necropsy. All had multiple bullae and ulcers involving the nasal planum and paw pads, as well as sloughing claws; one puppy also had oral and esophageal ulcers. The complete genome of one affected puppy was sequenced, and 37 known EB candidate genes were assessed. We found a candidate causative variant in COL7A1, which encodes the collagen VII alpha 1 chain. The variant is a complex rearrangement involving duplication of a 107 bp region harboring a frameshift deletion of 7 bp. The variant is predicted to truncate more than 75% of the open reading frame, p.(Val677Serfs*11). Targeted genotyping of this duplication confirmed that all three affected puppies were homozygous for the duplication, whereas 12 unaffected Basset Hounds did not carry the duplication. This variant was also not seen in the genomes of more than 600 dogs of other breeds. COL7A1 variants have been identified in humans and dogs with dystrophic epidermolysis bullosa (DEB). The identified COL7A1 variant therefore most likely represents the causative variant and allows the refinement of the preliminary EB diagnosis to DEB.


2020 ◽  
Author(s):  
Belén de la Morena-Barrio ◽  
Jonathan Stephens ◽  
María Eugenia de la Morena-Barrio ◽  
Luca Stefanucci ◽  
José Padilla ◽  
...  

AbstractThe identification and characterization of structural variants (SVs) in clinical genetics have remained historically challenging as routine genetic diagnostic techniques have limited ability to evaluate repetitive regions and SVs. Long-read whole-genome sequencing (LR-WGS) has emerged as a powerful approach to resolve SVs. Here, we used LR-WGS to study 19 unrelated cases with type I Antithrombin Deficiency (ATD), the most severe thrombophilia, where routine molecular tests were either negative, ambiguous, or not fully characterized. We developed an analysis workflow to identify disease-associated SVs and resolved 10 cases. For the first time, we identified a germline complex rearrangement involved in ATD previously misclassified as a deletion. Additionally, we provided molecular diagnoses for two unresolved individuals that harbored a novel SINE-VNTR-Alu retroelement insertion that we fully characterized by de novo assembly and confirmed by PCR amplification in all affected relatives. Finally, the nucleotide-level resolution achieved for all the SVs allowed breakpoint analysis, which revealed a replication-based mechanism for most of the cases. Our study underscores the utility of LR-WGS as a complementary diagnostic method to identify, characterize, and unveil the molecular mechanism of formation of disease-causing SVs, and facilitates decision making about long-term thromboprophylaxis in ATD patients.


2020 ◽  
Vol 33 (5) ◽  
pp. 767-772
Author(s):  
Keisuke Goto ◽  
Daniel Pissaloux ◽  
Luc Durand ◽  
Franck Tirode ◽  
Bernard Guillot ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3431
Author(s):  
Serena Redaelli ◽  
Donatella Conconi ◽  
Nicoletta Villa ◽  
Elena Sala ◽  
Francesca Crosti ◽  
...  

Satellited non-acrocentric autosomal chromosomes (ps–qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps–qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Kelly C.d.A. Monteso ◽  
Moneeb A.K. Othman ◽  
Roberto R. Capela de Matos ◽  
Daniela R. Ney Garcia ◽  
Moisés M. da Rocha ◽  
...  

2020 ◽  
Vol 502 ◽  
pp. 91-98
Author(s):  
Meizhen Shi ◽  
Xin Chen ◽  
Lanlan Zeng ◽  
Zhuo Li ◽  
Desheng Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document