scholarly journals New Iterative Algorithm for Solving Constrained Convex Minimization Problem and Split Feasibility Problem

2021 ◽  
Vol 1 (2) ◽  
pp. 106-132
Author(s):  
Austine Efut Ofem ◽  
Unwana Effiong Udofia ◽  
Donatus Ikechi Igbokwe

The purpose of this paper is to introduce a new iterative algorithm to approximate the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Also, we show that our proposed iterative algorithm converges weakly and strongly to the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Furthermore, it is proved analytically that our new iterative algorithm converges faster than one of the leading iterative algorithms in the literature for almost contraction mappings. Some numerical examples are also provided and used to show that our new iterative algorithm has better rate of convergence than all of S, Picard-S, Thakur and M iterative algorithms for almost contraction mappings and generalized α-nonexpansive mappings. Again, we show that the proposed iterative algorithm is stable with respect to T and data dependent for almost contraction mappings. Some applications of our main results and new iterative algorithm are considered. The results in this article are improvements, generalizations and extensions of several relevant results existing in the literature.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1012
Author(s):  
Suthep Suantai ◽  
Narin Petrot ◽  
Montira Suwannaprapa

We consider the split feasibility problem in Hilbert spaces when the hard constraint is common solutions of zeros of the sum of monotone operators and fixed point sets of a finite family of nonexpansive mappings, while the soft constraint is the inverse image of a fixed point set of a nonexpansive mapping. We introduce iterative algorithms for the weak and strong convergence theorems of the constructed sequences. Some numerical experiments of the introduced algorithm are also discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Tongxin Xu ◽  
Luoyi Shi

AbstractIn this paper, we propose a new iterative algorithm for solving the multiple-sets split feasibility problem (MSSFP for short) and the split equality fixed point problem (SEFPP for short) with firmly quasi-nonexpansive operators or nonexpansive operators in real Hilbert spaces. Under mild conditions, we prove strong convergence theorems for the algorithm by using the projection method and the properties of projection operators. The result improves and extends the corresponding ones announced by some others in the earlier and recent literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Luoyi Shi ◽  
Ru Dong Chen ◽  
Yu Jing Wu

The multiple-sets split equality problem (MSSEP) requires finding a pointx∈∩i=1NCi,y∈∩j=1MQjsuch thatAx=By, whereNandMare positive integers,{C1,C2,…,CN}and{Q1,Q2,…,QM}are closed convex subsets of Hilbert spacesH1,H2, respectively, andA:H1→H3,B:H2→H3are two bounded linear operators. WhenN=M=1, the MSSEP is called the split equality problem (SEP). If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP) and split feasibility problem (SFP), respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 916
Author(s):  
Anchalee Sripattanet ◽  
Atid Kangtunyakarn

The purpose of this paper is to introduce an iterative algorithm of two sequences which depend on each other by using the intermixed method. Then, we prove a strong convergence theorem for solving fixed-point problems of nonlinear mappings and we treat two variational inequality problems which form an approximate modified generalized system of variational inequalities (MGSV). By using our main theorem, we obtain the additional results involving the split feasibility problem and the constrained convex minimization problem. In support of our main result, a numerical example is also presented.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 119
Author(s):  
Xinglong Wang ◽  
Jing Zhao ◽  
Dingfang Hou

The split feasibility problem models inverse problems arising from phase retrievals problems and intensity-modulated radiation therapy. For solving the split feasibility problem, Xu proposed a relaxed CQ algorithm that only involves projections onto half-spaces. In this paper, we use the dual variable to propose a new relaxed CQ iterative algorithm that generalizes Xu’s relaxed CQ algorithm in real Hilbert spaces. By using projections onto half-spaces instead of those onto closed convex sets, the proposed algorithm is implementable. Moreover, we present modified relaxed CQ algorithm with viscosity approximation method. Under suitable conditions, global weak and strong convergence of the proposed algorithms are proved. Some numerical experiments are also presented to illustrate the effectiveness of the proposed algorithms. Our results improve and extend the corresponding results of Xu and some others.


Sign in / Sign up

Export Citation Format

Share Document