southern volcanic zone
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 24)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Fernanda Silva Santos ◽  
Carlos Sommer ◽  
Mauricio Haag ◽  
Walter Báez ◽  
Alberto Caselli ◽  
...  

Monogenetic volcanoes are among the most common volcanic landforms on Earth. The morphology and distribution of small volcanoes can provide important information about eruption dynamics and tectonics. The Southern Volcanic Zone of the Andes (CSVZ) comprises one of the most active magmatic regions on Earth. Characterized by the presence of polygenetic volcanoes and calderas in a complex tectonic setting, this region also hosts hundreds of small, back-arc monogenetic volcanoes. In this contribution, we apply a Geographic Information System (GIS) that combines imagery data and digital elevation models to establish the first comprehensive dataset of monogenetic volcanoes in the CSVZ (38° to 40° S), exploring their eruption dynamics and relationship to tectonic and structural processes. Combining spatial analysis and geomorphological observations, we identify the presence of 356 monogenetic volcanoes distributed into nine clusters, now grouped in the Zapala Volcanic Field (ZVF). The ZVF is marked by the predominance of cinder cones (80%) followed by phreatomagmatic volcanoes (20%), suggesting some influence of external water in the eruption dynamics. Generally, monogenetic vents present a clear association with local and regional lineaments, suggesting a strong structural control on the occurrence of the monogenetic deposits. The higher vent densities are observed in the southern Loncopué Though, an important extensional feature related to tearing of the subducted Nazca plate underneath the South American Plate. Morphometric parameters of cinder cones indicate variable stress orientations in the CSVZ that possibly result from the oblique tectonics in the region. From north to south, the maximum principal stress rotates from NE-SW to E-W and becomes progressively less constrained as it distances from the current magmatic arc. Based on the relative ages, we map the evolution of monogenetic volcanism through time. Our results suggest a waning in the monogenetic activity in ZVF over time. When compared to monogenetic fields in the Central Andes, the ZVF is marked by higher vent densities and number of phreatomagmatic landforms, with the absence of lava domes. This ultimately reflects the contrasting crustal structure and climate conditions of these two regions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Felipe Aguilera ◽  
Javiera Caro ◽  
Susana Layana

One of the major challenges in the understanding of the crater lakes dynamics and their connection with magmatic/hydrothermal processes is the continuous tracking of the physical behavior of lakes, especially in cases of remote and poorly accessible volcanoes. Peteroa volcano (Chile–Argentina border) is part of the Planchón–Peteroa–Azufre Volcanic Complex, one of the three volcanoes in the Southern Volcanic Zone of the Andes with crater lakes. Peteroa volcano is formed by a ∼5 km diameter caldera-type crater, which hosts four crater lakes and several fumarolic fields. Peteroa volcano has a large history of eruptive activity including phreatic-and-phreatomagmatic explosions and several episodes of strong degassing from its crater lakes. Here, we used TIR and SWIR bands from Landsat TM, ETM+, and OLI images available from October 1984 to December 2020 to obtain thermal parameters such as thermal radiance, brightness temperature, and heat fluxes, and Planet Labs Inc. images (RapidEye and PlanetScope) available between May 2009 and December 2020 to obtain physical parameters such as area, color, and state (liquid or frozen) of the crater lakes. We reviewed the historical eruptive activity and compared it with thermal and physical data obtained from satellite images. We determined the occurrence of two eruptive/thermal cycles: 1) Cycle 1 includes the formation of a new fumarolic field and two active craters during a short eruptive period, which includes thermal activity in three of the four crater lakes, and a strong degassing process between October 1998 and February 2001, coincident with a peak of volcanic heat flux (Qvolc) in two craters. The cycle finished with an eruptive episode (September 2010–July 2011). 2) Cycle 2 is represented by the thermal reactivation of two crater lakes, formation and detection of thermal activity in a new nested crater, and occurrence of a new eruptive episode (October 2018–April 2019). We observed a migration of the thermal and eruptive activity between the crater lakes and the interconnection of the pathways that feed the lakes, in both cases, partially related to the presence of two deep magma bodies. The Qvolc in Peteroa volcano crater lakes is primarily controlled by volcanic activity, and seasonal effects affect it at short-term, whilst at long-term, seasonal effects do not show clear influences in the volcanic heat fluxes. The maximum Qvolc measured between all crater lakes during quiescent periods was 59 MW, whereas during unrest episodes Qvolc in single crater lakes varied from 7.1 to 38 MW, with Peteroa volcano being classified as a low volcanic heat flux system. The detection of new thermal activity and increase of Qvolc in Peteroa volcano previous to explosive unrest can be considered as a good example of how thermal information from satellite images can be used to detect possible precursors to eruptive activity in volcanoes which host crater lakes.


2021 ◽  
Vol 176 (6) ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Salvatrice Montalbano ◽  
Olivier Namur ◽  
Tonin Bechon ◽  
Pierre Schiano ◽  
...  

2021 ◽  
Author(s):  
Francisca Mallea-Lillo ◽  
Miguel Ángel Parada ◽  
Eduardo Morgado ◽  
Darío Hübner ◽  
Claudio Contreras

2020 ◽  
Vol 218 ◽  
pp. 106611
Author(s):  
Linda Daniele ◽  
Matías Taucare ◽  
Benoît Viguier ◽  
Gloria Arancibia ◽  
Diego Aravena ◽  
...  

Geothermics ◽  
2020 ◽  
Vol 87 ◽  
pp. 101828 ◽  
Author(s):  
J. Sepúlveda ◽  
G. Arancibia ◽  
E. Molina ◽  
J.P. Gilbert ◽  
M. Duda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document