reactor axis
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4226
Author(s):  
Michela Costa ◽  
Maurizio La Villetta ◽  
Daniele Piazzullo ◽  
Domenico Cirillo

The development of a one-dimensional (1D) phenomenological model for biomass gasification in downdraft reactors is presented in this study; the model was developed with the aim of highlighting the main advantages and limits related to feedstocks that are different from woodchip, such as hydro-char derived from the hydrothermal carbonization of green waste, or a mix of olive pomace and sawdust. An experimental validation of the model is performed. The numerically evaluated temperature evolution along the reactor gasifier is found to be in agreement with locally measured values for all the considered biomasses. The model captures the pressure drop along the reactor axis, despite an underestimation with respect to the performed measurements. The producer gas composition resulting from the numerical model at the exit section is in quite good agreement with gas-chromatograph analyses (12% maximum error for CO and CO2 species), although the model predicts lower methane and hydrogen content in the syngas than the measurements show. Parametric analyses highlight that lower degrees of porosity enhance the pressure drop along the reactor axis, moving the zones characterized by the occurrence of the combustion and gasification phases towards the bottom. An increase in the biomass moisture content is associated with a delayed evolution of the temperature profile. The high energy expenditure in the evaporation phase occurs at the expense of the produced hydrogen and methane in the subsequent phases.



2019 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Alon Davidy

Levulinic acid (LA) has been ranked as one of the “Top 10” building blocks for future bio-refineries as proposed by the US Department of Energy. It is considered one of the most important platform molecules for the production of fine chemicals and fuels based on its compatibility with existing processes, market economics, and industrial ability to serve as a platform for the synthesis of important derivatives. Hydrogenation of LA to produce γ-valerolactone (GVL) is an active area of research due to the potential of GVL to be used as a biofuel in its own right and for its subsequent transformation into hydrocarbon fuels. This paper contains a new design for a simple, cost effective, and safe hydrogenation reactor for the transformation of levulinic acid to γ-valerolactone (GVL) by utilizing high boiling point organic fluid. The hydrogenation reactor is composed of a heating source—organic fluid (called “DOWTHERM A” or “thermex”) and the catalytic reactor. The advantages of high boiling temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept more suitable and safer (water coming in contact with liquid metal is well understood in the metallurgical industry to be a steam explosion hazard) for heating the hydrogenation reactor. COMSOL multi-physics software version 4.3b was applied in this work and simultaneously solves the continuity, Navier-Stokes (fluid flow), energy (heat transfer), and diffusion with chemical reaction kinetics equations. It was shown that the heat flux supplied by the DOWTHERM A organic fluid could provide the necessary heat flux required for maintaining the hydrogenation process. It was found that the mass fractions of hydrogen and levulinic acid decreased along the reactor axis. The GVL mass fraction increased along the reactor axis.



Author(s):  
Run Luo ◽  
Pengfei Wang ◽  
Xinyu Wei ◽  
Shripad T. Revankar ◽  
Fuyu Zhao

A new neutronics and thermal-hydraulics coupled code named ARTAP is developed to analyze the steady-state and transient characteristics of accelerator driven subcritical system (ADS) in this paper. Monte Carlo simulations for spallation neutron source and deterministic calculations for the subcritical core are performed in the steady-state analysis module. The ADS core is divided into a number of nodes both along the reactor axis and the fuel pellet radius for the calculation of spatial temperature distributions. The power iteration method is adopted to solve the coupled neutronics and thermal-hydraulics problems. The transient analysis module consists of space-time neutron kinetics model and thermal-hydraulics dynamic model, which is calculated by using numerical differentiation formulas (NDFs) method. The new code is verified by comparing its predictions for both the steady-state and transient cases of the OECD/NEA ADS benchmark. Results of numerical simulations indicate that ARTAP is reliable and efficient to be applied for the ADS analysis.



2016 ◽  
Vol 10 (8) ◽  
pp. 1237-1243 ◽  
Author(s):  
O. N. Fedyaeva ◽  
M. Ya. Sokol ◽  
A. A. Vostrikov


2007 ◽  
Vol 55 (12) ◽  
pp. 53-58 ◽  
Author(s):  
A. Sozzi ◽  
F. Taghipour

The flow field of UV reactors was characterised experimentally using particle image velocimetry (PIV) and modelled with computational fluid dynamics (CFD). The reactor flow was integrated with the radiation fluence rate and photolysis kinetics to calculate the overall conversion of photo-reactant components in annular UV reactors with an inlet parallel and perpendicular to the reactor axis. The results indicated that the fluid flow distribution within the reactor volume affects photo-reactor performance.



Sign in / Sign up

Export Citation Format

Share Document