mueller matrices
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Natalia V. Kustova ◽  
Ilia Tkachev ◽  
Alexander Konoshonkin ◽  
Dmitrii Timofeev ◽  
Viktor Shishko ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 6742
Author(s):  
Hans Arwin ◽  
Stefan Schoeche ◽  
James Hilfiker ◽  
Mattias Hartveit ◽  
Kenneth Järrendahl ◽  
...  

Optical chirality, in terms of circular birefringence and circular dichroism, is described by its electromagnetic and magnetoelectric material tensors, and the corresponding optical activity contributes to the Mueller matrix. Here, spectroscopic ellipsometry in the spectral range 210–1690 nm is used to address chiral phenomena by measuring Mueller matrices in transmission. Three approaches to determine chirality parameters are discussed. In the first approach, applicable in the absence of linear polarization effects, circular birefringence and circular dichroism are evaluated directly from elements of a Mueller matrix. In the second method, differential decomposition is employed, which allows for the unique separation of chirality parameters from linear anisotropic parameters as well as from depolarization provided that the sample is homogeneous along the optical path. Finally, electromagnetic modeling using the Tellegen constitutive relations is presented. The last method also allows structural effects to be included. The three methods to quantify optical chirality are demonstrated for selected materials, including sugar solutions, α-quartz, liquid crystals, beetle cuticle, and films of cellulose nanocrystals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wanrong Gao

AbstractIn this work, we introduce the concept of anisotropic dielectric susceptibility matrix of anisotropic medium for both nondepolarizing and depolarizing medium. The concept provides a new way of analyzing light scattering properties of anisotropic media illuminated by polarized light. The explicit expressions for the elements of the scattering matrix are given in terms of the elements of the Fourier transform of the anisotropic dielectric susceptibility matrix of the medium. Finally, expressions for the elements of the Jones matrix of a thin layer of a deterministic anisotropic medium and the elements of the Mueller matrix of a depolarizing medium are given. The results obtained in this work is helpful for deriving information about the correlated anisotropic structures in depolarizing media from measured Mueller matrices. The findings in this work may also well prove stimulating to researchers working on new methods for analyzing light scattering properties.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 983
Author(s):  
José J. Gil ◽  
Ignacio San José

Polarimetry is today a widely used and powerful tool for nondestructive analysis of the structural and morphological properties of a great variety of material samples, including aerosols and hydrosols, among many others. For each given scattering measurement configuration, absolute Mueller polarimeters provide the most complete polarimetric information, intricately encoded in the 16 parameters of the corresponding Mueller matrix. Thus, the determination of the mathematical structure of the polarimetric information contained in a Mueller matrix constitutes a topic of great interest. In this work, besides a structural decomposition that makes explicit the role played by the diattenuation-polarizance of a general depolarizing medium, a universal synthesizer of Muller matrices is developed. This is based on the concept of an enpolarizing ellipsoid, whose symmetry features are directly linked to the way in which the polarimetric information is organized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olga Chashchina ◽  
Hachem Mezouar ◽  
Jérémy Vizet ◽  
Clothilde Raoux ◽  
Junha Park ◽  
...  

AbstractSmooth muscle cells (SMCs) are critical players in cardiovascular disease development and undergo complex phenotype switching during disease progression. However, SMC phenotype is difficult to assess and track in co-culture studies. To determine the contractility of SMCs embedded within collagen hydrogels, we performed polarized light imaging and subsequent analysis based on Mueller matrices. Measurements were made both in the absence and presence of endothelial cells (ECs) in order to establish the impact of EC-SMC communication on SMC contractility. The results demonstrated that Mueller polarimetric imaging is indeed an appropriate tool for assessing SMC activity which significantly modifies the hydrogel retardance in the presence of ECs. These findings are consistent with the idea that EC-SMC communication promotes a more contractile SMC phenotype. More broadly, our findings suggest that Mueller polarimetry can be a useful tool for studies of spatial heterogeneities in hydrogel remodeling by SMCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wanrong Gao

AbstractIn this work, we propose that there exist coupling effects among birefringence, dichroism and off-diagonal depolarization parameters of differential Mueller matrix of random anisotropic media. An anisotropic spatial correlation function of anisotropic random medium is proposed to explain this phenomenon. The consequences of these effects are then pointed out. The idea in this work is very helpful for accurate interpretation of the measured Mueller matrices of optically anisotropic depolarizing medium. In addition, the concept of the anisotropic spatial correlation function of anisotropic random medium will open a new door and will play a central role for analyzing polarized light scattering by anisotropic random media.


Sign in / Sign up

Export Citation Format

Share Document