pulmonary microvessels
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)



BJR|Open ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 20210001
Author(s):  
Arshed Hussain Parry ◽  
Abdul Haseeb Wani

A growing body of evidence points to the frequent involvement of pulmonary microvessels in COVID-19 which was recognized first on CT, and subsequently demonstrated by clinical and pathological studies. Microvasculopathy occurring chiefly from endothelial and pericyte damage with resultant disruption of immune, thrombotic and renin–angiotensin–aldosterone balance leads to a constellation of clinical and biochemical derangements. Exploration of potential therapies directed at normalizing the vascular health can prove a major boon in the treatment of COVID-19.



Author(s):  
Jan K Hennigs ◽  
Aiqin Cao ◽  
Caiyun G Li ◽  
Minyi Shi ◽  
Julia Mienert ◽  
...  

Rationale: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of bone morphogenetic protein type 2 receptor (BMPR2) via two downstream transcription factors, PPARγ and p53. Objective: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ- p53 transcription factor complex in the pulmonary endothelium. Methods and Results: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial (PA) and lung microvascular (MV) endothelial cells (EC) in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation (ChIP) sequencing (seq) and RNA-seq established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung EC survival, angiogenesis and DNA repair including, EPHA2, FHL2, JAG1, SULF2 and TIGAR. Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in PAEC subjected to oxidative stress. In EC-Bmpr2-knockout mice unable to stabilize p53 in ECs under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAEC from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. Conclusions: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAEC downstream of dysfunctional BMPR2 to rehabilitate PAH PAEC, regenerate pulmonary microvessels and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.







2012 ◽  
Vol 112 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Kal E. Watson ◽  
William F. Dovi ◽  
Robert L. Conhaim

Vasoconstrictors cause contraction of pulmonary microvascular endothelial cells in culture. We wondered if this meant that contraction of these cells in situ caused active control of microvascular perfusion. If true, it would mean that pulmonary microvessels were not simply passive tubes and that control of pulmonary microvascular perfusion was not mainly due to the contraction and dilation of arterioles. To test this idea, we vasoconstricted isolated perfused rat lungs with angiotensin II, bradykinin, serotonin, or U46619 (a thromboxane analog) at concentrations that produced equal flows. We also perfused matched-flow controls. We then infused a bolus of 3 μm diameter particles into each lung and measured the rate of appearance of the particles in the venous effluent. We also measured microscopic trapping patterns of particles retained within each lung. Thirty seconds after particle infusion, venous particle concentrations were significantly lower ( P ≤ 0.05) for lungs perfused with angiotensin II or bradykinin than for those perfused with U46619, but not significantly different from serotonin perfused lungs or matched flow controls. Microscopic clustering of particles retained within the lungs was significantly greater ( P ≤ 0.05) for lungs perfused with angiotensin II, bradykinin, or serotonin, than for lungs perfused with U46619 or for matched flow controls. Our results suggest that these agents did not produce vasoconstriction by a common mechanism and support the idea that pulmonary microvessels possess a level of active control and are not simply passive exchange vessels.





Sign in / Sign up

Export Citation Format

Share Document