transcription factor complex
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 30)

H-INDEX

40
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Anna Lena Siemund ◽  
Eric Kowarz ◽  
Rolf Marschalek

Abstract Background: Recent pathomolecular studies on the MLL-AF4 fusion protein revealed that the murinized version of MLL-AF4, the MLL-Af4 fusion protein, was able to induce leukemia when expressed in murine or human hematopoietic stem/progenitor cells (1). In parallel, a group from Japan demonstrated that the pSer domain of the AF4 protein, as well as the pSer domain of the MLL-AF4 fusion is able to bind the Pol I transcription factor complex SL1 (2).Here, we investigated the human MLL-AF4 and a pSer-murinized version thereof for their functional properties in mammalian cells. Gene expression profiling studies were complemented by intracellular localization studies and functional experiments concerning the biological activities in the nuecleolus.Results: Based on our results, we have to conclude that MLL-AF4 is predominantly localizing in the nucleolus, thereby interfering withPol I transcription, and subsequently,also ribosomebiogenesis. The murinized pSer-variant is more localizing in the nucleus, which may explain their different biological behavior. Of note, AF4-MLL is cooperating at the molecular level with MLL-AF4, but not with the pSer-murinized version of it.Conclusion: This study provides new insights and a molecular explanation for the known differences between hMLL-hAF4 (not leukemogenic) and hMLL-mAf4 (leukemogenic). While the human pSer domain is able to efficiently recruit the SL1 transcription factor complex, the murine counterpart is not. This has several consequences for our understanding of t(4;11) leukemia which is by far the most frequent leukemia in infants, childhood and adults suffering from MLL-r acute leukemia.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1458
Author(s):  
Jan Erik Leuendorf ◽  
Thomas Schmülling

Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Trevor van Eeuwen ◽  
Yoonjung Shim ◽  
Hee Jong Kim ◽  
Tingting Zhao ◽  
Shrabani Basu ◽  
...  

AbstractThe versatile nucleotide excision repair (NER) pathway initiates as the XPC–RAD23B–CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4–Rad23-Rad33 (yeast homologue of XPC–RAD23B–CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9–9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Jessica Rodríguez‐Ríos ◽  
Emili Rosado‐Rodríguez ◽  
José Rodríguez‐Martínez

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 910
Author(s):  
Rusan Catar ◽  
Guido Moll ◽  
Isa Hosp ◽  
Michele Simon ◽  
Christian Luecht ◽  
...  

Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1–ERK1/2–AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kensei Kishimoto ◽  
Catera L. Wilder ◽  
Justin Buchanan ◽  
Minh Nguyen ◽  
Chidera Okeke ◽  
...  

Interferon β (IFN-β) signaling activates the transcription factor complex ISGF3 to induce gene expression programs critical for antiviral defense and host immune responses. It has also been observed that IFN-β activates a second transcription factor complex, γ-activated factor (GAF), but the significance of this coordinated activation is unclear. We report that in murine lung epithelial cells (MLE12) high doses of IFN-β indeed activate both ISGF3 and GAF, which bind to distinct genomic locations defined by their respective DNA sequence motifs. In contrast, low doses of IFN-β preferentially activate ISGF3 but not GAF. Surprisingly, in MLE12 cells GAF binding does not induce nearby gene expression even when strongly bound to the promoter. Yet expression of interferon stimulated genes is enhanced when GAF and ISGF3 are both active compared to ISGF3 alone. We propose that GAF may function as a dose-sensitive amplifier of ISG expression to enhance antiviral immunity and establish pro-inflammatory states.


2021 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yi Zhong ◽  
Shiho Miki ◽  
Akiko Taura ◽  
Terence Rabbitts

Abstract The transcription factor complex, consisting of LMO2, TAL1/LYL1, and GATA2, plays an important role in capillary sprouting by regulating VEGFR2, DLL4, and angiopoietin 2 in tip cells. Overexpression of the basic helix-loophelix transcription factor LYL1 in transgenic mice results in shortened tails. This phenotype is associated with vessel hyperbranching and a relative paucity of straight vessels due to DLL4 downregulation in tip cells by forming aberrant complex consisting of LMO2 and LYL1. Knockdown of LMO2 or TAL1 inhibits capillary sprouting in spheroid-based angiogenesis assays, which is associated with decreased angiopoietin 2 secretion. In the same assay using mixed TAL1- and LYL1-expressing endothelial cells, TAL1 was found to be primarily located in tip cells, while LYL1-expressing cells tended to occupy the stalk position in sprouts by upregulating VEGFR1 than TAL1. Thus, the interaction between LMO2 and TAL1 in tip cells plays a key role in angiogenic switch of sprouting angiogenesis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3586
Author(s):  
Seth O’Conner ◽  
Wenguang Zheng ◽  
Mingsheng Qi ◽  
Yuba Kandel ◽  
Robert Fuller ◽  
...  

The NF-Y gene family is a highly conserved set of transcription factors. The functional transcription factor complex is made up of a trimer between NF-YA, NF-YB, and NF-YC proteins. While mammals typically have one gene for each subunit, plants often have multigene families for each subunit which contributes to a wide variety of combinations and functions. Soybean plants with an overexpression of a particular NF-YC isoform GmNF-YC4-2 (Glyma.04g196200) in soybean cultivar Williams 82, had a lower amount of starch in its leaves, a higher amount of protein in its seeds, and increased broad disease resistance for bacterial, viral, and fungal infections in the field, similar to the effects of overexpression of its isoform GmNF-YC4-1 (Glyma.06g169600). Interestingly, GmNF-YC4-2-OE (overexpression) plants also filled pods and senesced earlier, a novel trait not found in GmNF-YC4-1-OE plants. No yield difference was observed in GmNF-YC4-2-OE compared with the wild-type control. Sequence alignment of GmNF-YC4-2, GmNF-YC4-1 and AtNF-YC1 indicated that faster maturation may be a result of minor sequence differences in the terminal ends of the protein compared to the closely related isoforms.


Author(s):  
Soyoung Kim ◽  
Gahyeon Song ◽  
Taebok Lee ◽  
Minseong Kim ◽  
Jeongrae Kim ◽  
...  

AbstractWnt signaling is mainly transduced by β-catenin via regulation of the β-catenin destruction complex containing Axin, APC, and GSK3β. Transcription factor EB (TFEB) is a well-known master regulator of autophagy and lysosomal biogenesis processes. TFEB’s nuclear localization and transcriptional activity are also regulated by various upstream signals. In this study, we found that Wnt signaling induces the nuclear localization of TFEB and the expression of Wnt target genes is regulated by TFEB-β-catenin-TCF/LEF1 as well as β-catenin-TCF/LEF1 complexes. Our biochemical data revealed that TFEB is a part of the β-catenin destruction complex, and destabilization of the destruction complex by knockdown of either Axin or APC causes nuclear localization of TFEB. Interestingly, RNA-sequencing analysis revealed that about 27% of Wnt3a-induced genes were TFEB dependent. However, these “TFEB mediated Wnt target genes” were different from TFEB target genes involved in autophagy and lysosomal biogenesis processes. Mechanistically, we found that Tankyrase (TNKS) PARsylates TFEB with Wnt ON signaling, and the nuclear localized PARsylated TFEB forms a complex with β-catenin-TCF/LEF1 to induce the “TFEB mediated Wnt target genes”. Finally, we found that in various types of cancer, the levels of TFEB mediated Wnt target genes exhibit strong correlations with the level of Axin2, which represents the activity of Wnt signaling. Overall, our data suggest that Wnt signaling induces the expression of a subset of genes that are distinct from previously known genes regulated by the β-catenin-TCF/LEF1 complex or TFEB, by forming a transcription factor complex consisting of PARsylated TFEB and β-catenin-TCF/LEF1.


Sign in / Sign up

Export Citation Format

Share Document