electrokinetic remediation
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 135)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
pp. 128273
Author(s):  
Longgang Chu ◽  
Long Cang ◽  
Guodong Fang ◽  
Zhaoyue Sun ◽  
Xinghao Wang ◽  
...  

2021 ◽  
Author(s):  
Jiangyuan Wang ◽  
Qiu Yu ◽  
Yi Zheng ◽  
Jing Li ◽  
Binquan Jiao ◽  
...  

Abstract Heavy metal pollutant Cr(Ⅵ) in the environment will pose a severe threat to animal and human health. In this work, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy were prepared to enhance adsorption of Cr(Ⅵ) by doping Fe3O4 nanoparticles and amino radicals into the original PPy structure. Their characteristics were investigated by FTIR, SEM, EDS, BET analysis, and batch adsorption experiments. And they were used as permeable reaction barriers (PRB) to combine with electrokinetic remediation (EKR) to remediate Cr-contaminated soil. Adsorption experiment results showed that the maximum adsorption capacities of PPy, Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy for Cr(Ⅵ) were 60.43 mg/g, 67.12 mg/g, 159.86 mg/g, and 141.50 mg/g, respectively. All of them followed the kinetic pseudo-second-order model and the Langmuir isothermal model with a monolayer adsorption behavior. In EKR/PRB system, the presence of Fe3O4@PPy, Arg@PPy, and Arg/Fe3O4@PPy obtained the higher Cr(Ⅵ) removal efficiency near the anode than that of the PPy, increasing by 74.60%, 26.04%, 68.64%, respectively. A strong electrostatic attraction between anion contaminants and protonated modified PPy and a reduction from Cr(Ⅵ) to Cr(Ⅲ) appeared in the EKR remediation process under acid conditions. This study opened up a prospect for applying modified PPy composites to treat heavy metal contaminated soil.


2021 ◽  
Vol 894 (1) ◽  
pp. 012034
Author(s):  
M A Budihardjo ◽  
R P Safitri ◽  
B S Ramadan ◽  
A J Effendi ◽  
S Hidayat ◽  
...  

Abstract Research on soil remediation continues to develop, one of which is electrokinetic remediation combined with a permeable reactive barrier as a medium to prevent the migration of metals removed from the anode and cathode spaces. Thus, it is hoped that there is no need for reprocessing the residue resulting from electrokinetic remediation. This study aims to conduct a bibliographical analysis related to electrokinetic remediation coupled by permeable reactive barriers for heavy metal contaminated soil and to examine the effect of using various types of reactive barrier materials and their placement on the pollutants removal in the soil. Based on the results of bibliographic analysis, 26 relevant scientific articles were obtained, and the most publications in 2020 with 27% additional article publications are found. China and Environmental Science and Pollutant Research are the countries and journals that contribute the most to publications related to EK-PRB on heavy metal polluted soils.


Sign in / Sign up

Export Citation Format

Share Document