positive pool
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Nira R. Pollock ◽  
David Berlin ◽  
Sandra C. Smole ◽  
Lawrence C. Madoff ◽  
Catherine Brown ◽  
...  

SARS-CoV2 testing is one component of a multi-layered mitigation strategy to enable safe in-person school attendance for the K-12 school population. However, costs, logistics, and uncertainty about effectiveness are potential barriers to implementation. We assessed early data from the Massachusetts K-12 public school pooled SARS-CoV2 testing program, which incorporates two novel design elements: in-school “pod pooling” for assembling pools of dry anterior nasal swabs from 5-10 individuals, and positive pool deconvolution using the BinaxNOW antigen rapid diagnostic test (Ag RDT), to assess the operational and analytical feasibility of this approach. Over three months, 187,597 individual swabs were tested across 39,297 pools from 738 schools. The pool positivity rate was 0.8%; 98.2% of pools tested negative and 0.2% inconclusive, and 0.8% of pools submitted could not be tested. Of 310 positive pools, 70.6% had an N1 or N2 Ct value ≤ 30. In reflex testing (performed on specimens newly collected from members of the positive pool), 92.5% of fully deconvoluted pools with N1 or N2 target Ct ≤30 yielded a positive individual using the BinaxNOW test performed 1-3 days later. However, of 124 positive pools with full reflex testing data available for analysis, 32 (25.8%) of BinaxNOW pool deconvolution testing attempts did not detect a positive individual, requiring additional reflex testing. With sufficient staffing support and low pool positivity rates, pooled sample collection and reflex testing were feasible for schools. These early program findings confirm that screening testing for K-12 students and staff is achievable at scale with a scheme that incorporates in-school pooling, RT-PCR primary testing, and Ag RDT reflex/deconvolution testing.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Saw Thu Wah ◽  
Saung Nay Chi ◽  
Kyi Kyi Kyaing ◽  
Aye Aye Khin ◽  
Thida Aung

Background. Red cell Rhesus (Rh) antigen expression is influenced by the genetic polymorphism of RHD and RHCE genes and reveals serologically different reactions of RhD variants such as partial D, weak D, and Rh-Del. Serologically, Rh-Del type can only be detected by an adsorption-elution technique, and it might be mistyped as Rh-negative. The prevalence of Rh-Del has not been reported yet in Myanmar. Method. A total of 222 Rh-negative blood donors in the National Blood Center were tested for weak D and Rh-Del by indirect antihuman globulin and adsorption-elution method, respectively. RhCE typing was performed among Rh-negative and Rh-Del. Results. Of them, 75.2% (167/222) were Rh-negative, 15.8% (35/222) were Rh-Del, and 9% (20/222) were weak D. Of 202 blood donors (167 true Rh-negative and 35 Rh-Del), all of the Rh-Del positives were C-antigen-positive with 94.3% Ccee phenotype (33/35) and 5.7% CCee (2/35). Most of the Rh-negative donors (80.2%) were ccee phenotype (134/167). Conclusion. About half of Rh-Del subjects were repeated donors, and attention was needed to avoid transfusion of truly Rh-negative patients to prevent alloimmunization. It is recommended to do Rh-Del typing of Rh-negative donors who are C-antigen-positive and consider moving them to the Rh-positive pool. Further study is needed to clarify the alloimmunization status for transfusion of Rh-Del blood to Rh-negative recipients. Molecular markers for RhD-negative and D variants should be established in the Myanmar population to improve selection of antisera for Rh typing and enhance safety of the transfusion services.


1991 ◽  
Vol 114 (2) ◽  
pp. 373-384 ◽  
Author(s):  
K Turksen ◽  
J E Aubin

The number of identifiable stages and expression of differentiation markers in cells of the osteoblast lineage are not well understood. In the present study, a mAb, designated rat bone marrow (RBM) 211.13, was prepared that stained selectively the osteogenic and preosteoblastic cells along the surfaces of bone in calvariae, femurs, and metatarsals. The staining was cell surface associated and coincided with that for alkaline phosphatase (APase) detected histochemically. Only cells positive for APase activity by biochemical assay and not those without APase activity (e.g., fetal rat skin) stained with RBM 211.13. By immunoblotting, RBM 211.13 recognized a band coinciding with APase activity on nonreducing/nondenaturing gels, and RBM 211.13 precipitated a protein which on reduced gels migrated with an apparent molecular mass of approximately 80 kD. RBM 211.13 labeling was abolished by phosphatidylinosital-specific phospholipase C, known to release APase from the cell surface. All of these data support the concept that RBM 211.13 recognizes the bone isoenzyme of APase. RBM 211.13 was used to sort by flow cytometry the APase-positive and APase-negative cells from mixed fetal rat calvaria (RC) cell populations. The osteoprogenitors we identified earlier that form bone nodules in vitro (Bellows, C. G., J. E. Aubin, J. N. M. Heersche, and M. E. Antosz. 1986. Calcif. Tissue Int. 36:143-154; Bellows, C. J., J. N. M. Heersche, and J. E. Aubin. 1990. Dev. Biol. 140:132-138) were found within the APase-positive pool. By immunopanning, RC cells were separated into APase-enriched (APase-positive, adherent) and APase-depleted (APase-negative, nonadherent) populations. The APase-positive fraction was enriched two-to-threefold for bone-forming osteoprogenitors compared to unfractionated cells, while the APase-negative population formed very few nodules under the same conditions. Both populations responded to the glucocorticoid dexamethasone (DEX) with an increase in bone nodule formation. However, the fold stimulation in bone formation in the APase-negative population was approximately 30-fold, while the fold stimulation in the APase-positive population was only approximately 5-fold. These data suggest that APase expression can be used for immunoselection to fractionate osteoblastic populations into an APase-positive population and a population initially APase-negative, that virtually all osteoprogenitors forming bone in vitro in the absence of added glucocorticoids reside in the APase-positive pool, and that the only osteoprogenitors present in the APase-negative pool are those requiring DEX to differentiate.


Sign in / Sign up

Export Citation Format

Share Document