minor plane
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Ella Marie Morris ◽  
Neelakash Biswas ◽  
Seyed Sobhan Aleyasin ◽  
Mark Francis Tachie

Abstract The effects of nozzle orientation on the mixing and turbulent characteristics of elliptical free twin jets were studied experimentally. The experiments were conducted using modified contoured nozzles with a sharp linear contraction. The centers of the nozzle pair had a separation ratio of 5.5. Two nozzle configurations were tested, twin nozzles oriented along the minor plane (Twin_Minor) and twin nozzles oriented along the major plane (Twin_Major) and the results were compared with a single jet. In each case, the Reynolds number based on the maximum jet velocity and the equivalent diameter was 10,000. A planar particle image velocimetry (PIV) system was used to measure the velocity field in the jet symmetry plane. It was observed that the velocity decay rate is not sensitive to nozzle orientation. However, close to the jet exit, the spread rate was highest in the minor plane. In addition, contour plots of swirling strength, Reynolds shear stress and turbulent intensities revealed significant differences between the minor and major planes. Velocity profiles showed little variation close to the jet exit, while further downstream the variations between the velocity profiles were more pronounced between the major and minor planes.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Ella Marie Morris ◽  
Seyed Sobhan Aleyasin ◽  
Neelakash Biswas ◽  
Mark Francis Tachie

Abstract An experimental investigation of nozzle orientation effects on turbulent characteristics of elliptic triple free jets was carried out for three nozzle configurations. The first configuration had each nozzle oriented along the minor plane (3_Minor), the next had two nozzles oriented along the minor plane and one along the major plane (Min_Maj_Min) and the last configuration had one nozzle oriented along the minor plane and two along the major plane (Maj_Min_Maj). The experiments were conducted using modified contoured nozzles with a sharp linear contraction for a nozzle spacing ratio of 4.1d, a nozzle equivalent diameter of 9 mm, and Reynolds number of 10,000. Nozzle orientation effects on the mean velocity, turbulent intensity, and Reynolds shear stress were discussed. The velocity decay, jet spread, merging point (MP), combined point (CP), and potential core length were used to characterize the effects of nozzle orientation on the mixing performance. The 3_Minor configuration had shorter potential core length and closer MP location which are indicative of a faster mixing in the converging region. The early merging of 3_Minor led to higher levels of streamwise turbulent intensity. One-dimensional plots revealed that jets approached self-similarity at a faster rate in the major axis. The orientation of the middle jet was found to be a key factor in determining transverse diffusion of the Reynolds shear stress in the plane of observation. Two-point correlations were used to provide insight into the effects of nozzle orientation on the spatial coherence of the large-scale turbulence structure and integral length scale.


Author(s):  
Ella M. Morris ◽  
Seyed S. Aleyasin ◽  
Neelakash Biswas ◽  
Mark F. Tachie

Abstract An experimental investigation of nozzle orientation effects on turbulent characteristics of elliptic triple free jets was carried out for three nozzle configurations. The first configuration had all three nozzles oriented along the minor plane (3_Minor), the next had two nozzles oriented along the minor plane and one along the major plane (2_Minor_1_Major) and the last configuration had one nozzle oriented along the minor plane and two along the major plane (1_Minor_2_Major). The experiments were conducted using modified contoured nozzles with a sharp linear contraction for a nozzle-to-nozzle distance of 4.1, a nozzle equivalent diameter of 9 mm and a Reynolds number of 10,000. The effects of nozzle orientation on the mean velocity, turbulence intensity and Reynolds shear stress were discussed. The velocity decay, jet spread, merging point, combined point and potential core length were used to characterize the effects of nozzle orientation on the mixing performance. The results show that the 3_Minor configuration had shorter potential core length and closer merging point location which are indicative of a faster mixing in the converging region. Two-point correlation, skewness and flatness factors were used to provide insight into the effects of nozzle orientation on turbulence structure and higher order turbulence statistics.


Author(s):  
Ella M. Morris ◽  
Neelakash Biswas ◽  
Seyed S. Aleyasin ◽  
Mark F. Tachie

Abstract The effects of nozzle orientation on the mixing and turbulent characteristics of elliptical free twin jets were studied experimentally. The experiments were conducted using modified contoured nozzles with a sharp linear contraction. The centers of the nozzle pair had a separation ratio of 5.5. Four nozzle configurations were tested, one twin jet orientated along the minor plane (Twin_Minor), one twin jet orientated along the major plane (Twin_Major), one single jet orientated along the minor plane (Single_Minor) and one single jet orientated along the major plane (Single_Major). In each case, the Reynolds number based on the maximum jet velocity and the equivalent diameter was 10,000. A planar particle image velocimetry system was used to measure the velocity field in the jet symmetry plane. It was observed that the velocity decay rate is not sensitive to nozzle orientation. However, close to the jet exit the spread rate was highest in the minor plane. In addition, contour plots of Reynolds shear stress and turbulence intensities revealed significant differences between the minor and major plane. Velocity profiles showed little variation close to the jet exit, while further downstream the variations between the velocity profiles were more pronounced between the major and minor planes.


Sign in / Sign up

Export Citation Format

Share Document