breeding germplasm
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Amanda Karlstr&oumlm ◽  
Antonio G&oacutemez-Cortecero ◽  
Charlotte F Nellist ◽  
Matthew Ordidge ◽  
Jim M Dunwell ◽  
...  

Resistance to Neonectria ditissima, the fungus causing European canker in apple, was studied in a multiparental population of apple scions using several phenotyping methods. The studied population consists of individuals from multiple families connected through a common pedigree. The degree of disease of each individual in the population was assessed in three experiments: artificial inoculations of detached dormant shoots, potted trees in a glasshouse and in a replicated field experiment. The genetic basis of the differences in disease was studied using a pedigree-based analysis (PBA). Three quantitative trait loci (QTL), on linkage groups (LG) 6, 8 and 10 were identified in more than one of the phenotyping strategies. An additional four QTL, on LG 2, 5, 15 and 16 were only identified in the field experiment. The QTL on LG2 and 16 were further validated in a biparental population. QTL effect sizes were small to moderate with 4.3 to 19 % of variance explained by a single QTL. A subsequent analysis of QTL haplotypes revealed a dynamic response to this disease, in which the estimated effect of a haplotype varied over the field time-points. Two groups of QTL-haplotypes could be distinguished, one that displayed increased effect and one with a constant effect across time-points. These results suggest that there are different modes of control of N. ditissima in the early stages of infection compared to later time-points of disease development. It also shows that multiple QTL will need to be considered to improve resistance to European canker in apple breeding germplasm.


2021 ◽  
Author(s):  
Catja Selga ◽  
Pawel Chrominski ◽  
Ulrika Carlson-Nilsson ◽  
Mariette Andersson ◽  
Aakash Chawade ◽  
...  

Abstract The genetic diversity and population structure of breeding germplasm is central knowledge for crop improvement. To gain insight into the genetic potential of the germplasm used for potato breeding in a Nordic breeding program as well as the collections from the Nordic genebank (NordGen), 133 potato genotypes were genotyped using the Infinium Illumina 20K SNP array. After SNP filtering, 11 610 polymorphic SNPs were included in the analysis. In addition, data from three important breeding traits – percent dry matter and uniformity of tuber shape and eye – were scored to measure the variation be-tween groups. The genetic diversity among the genotypes was estimated using principal coordinate analysis based on the genetic distance between individuals, as well as by using the software STRUC-TURE. Both methods suggest that the collected breeding material and the germplasm from the gene-bank are closely related, with a low degree of population structure between the groups. The phenotypic distribution among the genotypes revealed significant differences, especially between farmer’s cultivars and released cultivars and breeding clones. The percent heterozygosity was similar between the groups, with a mean average of 58–60%. Overall, the breeding germplasm and the collection of genotypes from the Nordic gene bank seems to be closely related with similar genetic background. This gains insight that the genetic potential of available Nordic potato breeding germplasm is low, and for genetic hybridi-zation purposes, genotypes from outside the Nordic region should be employed.


Author(s):  
Ariel W Chan ◽  
Seren S Villwock ◽  
Amy L Williams ◽  
Jean-Luc Jannink

Abstract Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing (GBS) data and a validated multi-generational pedigree from the International Institute of Tropical Agriculture (IITA) cassava breeding germplasm consisting of 7,020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium (ICGMC). We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding.


Sugar Tech ◽  
2021 ◽  
Author(s):  
Yongwen Qi ◽  
Xiaoning Gao ◽  
Qiaoying Zeng ◽  
Zhao Zheng ◽  
Caiwen Wu ◽  
...  

2021 ◽  
Author(s):  
Jean-Luc Jannink ◽  
Ariel W. Chan ◽  
Seren St. Clair Villwock ◽  
Amy L Williams

Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing (GBS) data and a validated multi-generational pedigree from the International Institute of Tropical Agriculture (IITA) cassava breeding germplasm consisting of 7,020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium (ICGMC). We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding.


Sign in / Sign up

Export Citation Format

Share Document