driller system
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 1)

2019 ◽  
Vol 18 (04) ◽  
pp. 583-594 ◽  
Author(s):  
Kadir Gok ◽  
Arif Gok ◽  
Yasin Kisioglu

Heat reveals during the bone drilling operations in orthopedic surgery because of friction between bone and surgical drill bit. The heating causes extremely important damages in bone and soft tissues. The heating has a critical threshold and it is known as 47∘C. If bone temperature value exceeds 47∘C, osteonecrosis occurs in bones and soft tissues. Many factors such as surgical drill bit geometry and material, drilling parameters, coolant has important roles for the temperature rise. Many methods are used to decrease the temperature rise. The most effective method among them is to use the coolant internally. Numeric simulations of a new driller system to avoid the overheating during the orthopedic operating processes were performed in this study. The numerical simulation with/without coolant was also performed using the finite element based software. Computer aided simulation studies were used to measure the bone temperatures occurred during the bone drilling processes. The outcomes from the simulations were compared with the experimental results. A good temperature level agreement between the experimental results and FEA simulations was found during the bone drilling process.


Author(s):  
Ashwin Padsalgikar ◽  
Ramin Dabirian ◽  
Ken Oglesby ◽  
Ram S. Mohan ◽  
Ovadia Shoham

A slurry jet driller is a novel drilling method, which delivers an abrasive slurry and supercritical gas mixture, to an expander nozzle. The expanded fluids flowing out of the nozzle, energize the particles, which hit the target material and erode it, achieving drilling. The expansion of the gas from a super critical state to in situ pressure and temperature conditions is the driving mechanism of the drilling operation. The primary objective of this paper is to evaluate the feasibility of the novel slurry jet drilling system. An experimental program is carried out for testing the performance of a slurry jet driller. The slurry is formed by mixing water with garnet particles, and a super critical carbon dioxide as the gas phase. The purpose of experiments is to evaluate the erosive nature of garnet rocks and to test the cutting efficiency of the nozzle. The acquired data show that the material removal rate increases with increase in the gas-slurry flow ratio, until a ratio of 1.5. A further increase in the flow ratio results in a reduction of the rate of material removal. Improved nozzle geometry was obtained using a program written in MATLAB. Criteria used for geometry improvement was the force applied to the bottom of the drilled bore. A rudimentary model is developed for the prediction of material removal rate utilizing a slurry jet driller, which is presented in a dimensionless form. The model incorporates the important variables affecting the jet driller system performance, including fluid and target material properties, and particle velocity. A fair agreement is observed between model predictions and experimental data, exhibiting a 20% deviation.


Author(s):  
Kadir Gok ◽  
Levent Buluc ◽  
Umit Sefa Muezzinoglu ◽  
Yasin Kisioglu

Sign in / Sign up

Export Citation Format

Share Document