polynomial root finding
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Michael L. J. Miller

<p>This thesis describes and develops procedures for the generation of theoretical lightcurves that can be used to model gravitational microlensing events that involve multiple lenses. Of particular interest are the cases involving a single lens star with one or more orbiting planets, as this has proven to be an effective way of detecting extrasolar planets. Although there is an analytical expression for microlensing lightcurves produced by single lensing body, the generation of model lightcurves for more than one lensing body requires the use of numerical techniques. The method developed here, known as the semi-analytic method, involves the analytical rearrangement of the relatively simple ‘lens equation’ to produce a high-order complex lens polynomial. Root-finding algorithms are then used to obtain the roots of this ‘lens polynomial’ in order to locate the positions of the images and calculate their magnifications. By running example microlensing events through the root-finding algorithms, both the speed and accuracy of the Laguerre and Jenkins-Traub algorithms were investigated. It was discovered that, in order to correctly identify the image positions, a method involving solutions of several ‘lens polynomials’ corresponding to different coordinate origins needed to be invoked. Multipole and polygon approximations were also developed to include finite source and limb darkening effects. The semi-analytical method and the appropriate numerical techniques were incorporated into a C++ modelling code at VUW (Victoria University of Wellington) known as mlens2. The effectiveness of the semi-analytic method was demonstrated using mlens2 to generate theoretical lightcurves for the microlensing events MOA-2009-BLG-319 and OGLE-2006-BLG-109. By comparing these theoretical lightcurves with the observed photometric data and the published models, it was demonstrated that the semi-analytic method described in this thesis is a robust and efficient method for discovering extrasolar planets.</p>


2021 ◽  
Author(s):  
◽  
Michael L. J. Miller

<p>This thesis describes and develops procedures for the generation of theoretical lightcurves that can be used to model gravitational microlensing events that involve multiple lenses. Of particular interest are the cases involving a single lens star with one or more orbiting planets, as this has proven to be an effective way of detecting extrasolar planets. Although there is an analytical expression for microlensing lightcurves produced by single lensing body, the generation of model lightcurves for more than one lensing body requires the use of numerical techniques. The method developed here, known as the semi-analytic method, involves the analytical rearrangement of the relatively simple ‘lens equation’ to produce a high-order complex lens polynomial. Root-finding algorithms are then used to obtain the roots of this ‘lens polynomial’ in order to locate the positions of the images and calculate their magnifications. By running example microlensing events through the root-finding algorithms, both the speed and accuracy of the Laguerre and Jenkins-Traub algorithms were investigated. It was discovered that, in order to correctly identify the image positions, a method involving solutions of several ‘lens polynomials’ corresponding to different coordinate origins needed to be invoked. Multipole and polygon approximations were also developed to include finite source and limb darkening effects. The semi-analytical method and the appropriate numerical techniques were incorporated into a C++ modelling code at VUW (Victoria University of Wellington) known as mlens2. The effectiveness of the semi-analytic method was demonstrated using mlens2 to generate theoretical lightcurves for the microlensing events MOA-2009-BLG-319 and OGLE-2006-BLG-109. By comparing these theoretical lightcurves with the observed photometric data and the published models, it was demonstrated that the semi-analytic method described in this thesis is a robust and efficient method for discovering extrasolar planets.</p>


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1057
Author(s):  
Qifeng Wang ◽  
Xiaolin Hu ◽  
Xiaobao Deng ◽  
Nicholas E. Buris

Antenna element mutual coupling degrades the performance of Direction of Arrival (DoA) estimation significantly. In this paper, a novel machine learning-based method via Neural Tangent Kernel (NTK) is employed to address the DoA estimation problem under the effect of electromagnetic mutual coupling. NTK originates from Deep Neural Network (DNN) considerations, based on the limiting case of an infinite number of neurons in each layer, which ultimately leads to very efficient estimators. With the help of the Polynomial Root Finding (PRF) technique, an advanced method, NTK-PRF, is proposed. The method adapts well to multiple-signal scenarios when sources are far apart. Numerical simulations are carried out to demonstrate that this NTK-PRF approach can handle, accurately and very efficiently, multiple-signal DoA estimation problems with realistic mutual coupling.


2020 ◽  
Vol 54 (3) ◽  
pp. 65-85
Author(s):  
Joris van der Hoeven ◽  
Michael Monagan

Let p be a prime of the form p = σ2 k + 1 with σ small and let F p denote the finite field with p elements. Let P ( z ) be a polynomial of degree d in F p [ z ] with d distinct roots in F p . For p =5 · 2 55 + 1 we can compute the roots of such polynomials of degree 10 9 . We believe we are the first to factor such polynomials of size one billion. We used a multi-core computer with two 10 core Intel Xeon E5 2680 v2 CPUs and 128 gigabytes of RAM. The factorization takes just under 4,000 seconds on 10 cores and uses 121 gigabytes of RAM. We used the tangent Graeffe root finding algorithm from [27, 19] which is a factor of O (log d ) faster than the Cantor-Zassenhaus algorithm. We implemented the tangent Graeffe algorithm in C using our own library of 64 bit integer FFT based in-place polynomial algorithms then parallelized the FFT and main steps using Cilk C. In this article we discuss the steps of the tangent Graeffe algorithm, the sub-algorithms that we used, how we parallelized them, and how we organized the memory so we could factor a polynomial of degree 10 9 . We give both a theoretical and practical comparison of the tangent Graeffe algorithm with the Cantor-Zassenhaus algorithm for root finding. We improve the complexity of the tangent Graeffe algorithm by a factor of 2. We present a new in-place product tree multiplication algorithm that is fully parallelizable. We present some timings comparing our software with Magma's polynomial factorization command. Polynomial root finding over smooth finite fields is a key ingredient for algorithms for sparse polynomial interpolation that are based on geometric sequences. This application was also one of our main motivations for the present work.


Author(s):  
Hui Zhai ◽  
Zheng Li ◽  
Xiaofei Zhang

In this paper, we investigate the direction of arrival (DOA) estimation problem of noncircular signals for coprime linear array (CLA). From the perspective of the CLA as extracted from a filled uniform linear array (ULA), a noncircular root-MUSIC algorithm is proposed to estimate the DOA which can avoid the spectral peak search and lower the computational complexity. Due to the noncircular characteristic, the proposed algorithm enables to resolve more sources than sensors. Meanwhile, the proposed algorithm has better angle estimation performance than some conventional DOA estimation algorithms. Numerical simulation results illustrate the performance of the proposed method.


2019 ◽  
Vol 29 (07) ◽  
pp. 2050104 ◽  
Author(s):  
Jinqing Shen ◽  
Xiaofei Zhang ◽  
Yi He

In this paper, we investigate the problem of blind joint multi-parameter estimation for polarization-sensitive coprime linear arrays (PS-CLAs). We propose a reduced-dimensional polynomial root finding approach, which first utilizes the relation between the two subarrays to reconstruct the spectrum function and then converts three-dimensional (3D) total spectral search (TSS) to one-dimensional (1D) TSS. Furthermore, 1D polynomial root finding technique is employed to obtain the ambiguous direction of arrival (DOA) estimates, for further saving the computational cost. Finally, the true DOA estimates can be obtained based on the arrangements with coprime property, and subsequently the polarization parameters can be estimated through pairing. In addition, the matching error of false targets can be avoided due to the relation between the two subarrays. The proposed approach only requires about 0.01% computational complexity of the 1D TSS method to achieve the same estimation performance and behaves better in resolution. Simulations are provided to validate the superiority of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document