scholarly journals DoA Estimation Using Neural Tangent Kernel under Electromagnetic Mutual Coupling

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1057
Author(s):  
Qifeng Wang ◽  
Xiaolin Hu ◽  
Xiaobao Deng ◽  
Nicholas E. Buris

Antenna element mutual coupling degrades the performance of Direction of Arrival (DoA) estimation significantly. In this paper, a novel machine learning-based method via Neural Tangent Kernel (NTK) is employed to address the DoA estimation problem under the effect of electromagnetic mutual coupling. NTK originates from Deep Neural Network (DNN) considerations, based on the limiting case of an infinite number of neurons in each layer, which ultimately leads to very efficient estimators. With the help of the Polynomial Root Finding (PRF) technique, an advanced method, NTK-PRF, is proposed. The method adapts well to multiple-signal scenarios when sources are far apart. Numerical simulations are carried out to demonstrate that this NTK-PRF approach can handle, accurately and very efficiently, multiple-signal DoA estimation problems with realistic mutual coupling.

Author(s):  
Hui Zhai ◽  
Zheng Li ◽  
Xiaofei Zhang

In this paper, we investigate the direction of arrival (DOA) estimation problem of noncircular signals for coprime linear array (CLA). From the perspective of the CLA as extracted from a filled uniform linear array (ULA), a noncircular root-MUSIC algorithm is proposed to estimate the DOA which can avoid the spectral peak search and lower the computational complexity. Due to the noncircular characteristic, the proposed algorithm enables to resolve more sources than sensors. Meanwhile, the proposed algorithm has better angle estimation performance than some conventional DOA estimation algorithms. Numerical simulation results illustrate the performance of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2651
Author(s):  
Oluwole John Famoriji ◽  
Thokozani Shongwe

A spherical antenna array (SAA) is the configuration of choice in obtaining an antenna array with isotropic characteristics. An SAA has the capacity to receive an electromagnetic wave (EM) with equal intensity irrespective of the direction-of-arrival (DoA) and polarization. Therefore, the DoA estimation of electromagnetic (EM) waves impinging on an SAA with unknown mutual coupling needs to be considered. In the spherical domain, the traditional multiple signal classification algorithm (SH-MUSIC) is faced with a computational complexity problem. This paper presents a one-dimensional MUSIC method (1D-MUSIC) for the estimation of the azimuth and elevation angles. An intermediate mapping matrix that exists between Fourier series and the spherical harmonic function is designed, and the Fourier series Vandermonde structure is used for the realization of the polynomial rooting technique. This mapping matrix can be computed prior to the DoA estimation, and it is only a function of the array configuration. Based on the mapping matrix, the 2-D angle search is transformed into two 1-D angle findings. Employing the features of the Fourier series, two root polynomials are designed for the estimation of the elevation and azimuth angles, spontaneously. The developed method avoids the 2-D spectral search, and angles are paired in automation. Both numerical simulation results, and results from experimental measured data (i.e., with mutual coupling effect incorporated), show the validity, potency, and potential practical application of the developed algorithm.


PIERS Online ◽  
2007 ◽  
Vol 3 (8) ◽  
pp. 1160-1164 ◽  
Author(s):  
Konstantinos A. Gotsis ◽  
E. G. Vaitsopoulos ◽  
Katherine Siakavara ◽  
J. N. Sahalos

2019 ◽  
Vol 11 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Ziyu Xu ◽  
Qisheng Zhang ◽  
Linyan Guo

AbstractA printed multiband Multi-Input Multiple-Output (MIMO) antenna is proposed in this paper. This MIMO antenna system comprises two symmetric printed monopole antennas. Each antenna element consists of multiple bend lines, producing four resonant modes and covering the GSM900, PCS, LTE2300, and 5G bands. Simulated and measured results prove that the proposed MIMO antenna can be applied to traditional 2G, 3G, 4G, and present 5G mobile communication. By etching four inverted L-shaped grooves on its ground plate, mutual coupling between the adjacent antenna elements has been suppressed. This makes the |S21| at all four resonant modes is lower than −40 dB. In addition, its low coupling mechanism has been analyzed by surface current distribution. The designed multiband MIMO antenna provides an idea of reference to realize low mutual coupling between antenna elements, which is also realizable in infrared or optical regimes with appropriate designs.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


2017 ◽  
Vol 18 ◽  
pp. 46-56 ◽  
Author(s):  
Kahina Ghidouche ◽  
Abderrahmane Sider ◽  
Raphaël Couturier ◽  
Christophe Guyeux

2018 ◽  
Vol 54 (23) ◽  
pp. 1346-1348 ◽  
Author(s):  
Dandan Meng ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Chong Shen

Sign in / Sign up

Export Citation Format

Share Document