non local equations
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 5 (3) ◽  
pp. 71
Author(s):  
Raffaela Capitanelli ◽  
Mirko D’Ovidio

The aim of this paper is to provide approximation results for space-time non-local equations with general non-local (and fractional) operators in space and time. We consider a general Markov process time changed with general subordinators or inverses to general subordinators. Our analysis is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes, and the Dirichlet forms characterize the Markov processes.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Giacomo Ascione ◽  
Nikolai Leonenko ◽  
Enrica Pirozzi

AbstractIn this paper we focus on strong solutions of some heat-like problems with a non-local derivative in time induced by a Bernstein function and an elliptic operator given by the generator or the Fokker–Planck operator of a Pearson diffusion, covering a large class of important stochastic processes. Such kind of time-non-local equations naturally arise in the treatment of particle motion in heterogeneous media. In particular, we use spectral decomposition results for the usual Pearson diffusions to exploit explicit solutions of the aforementioned equations. Moreover, we provide stochastic representation of such solutions in terms of time-changed Pearson diffusions. Finally, we exploit some further properties of these processes, such as limit distributions and long/short-range dependence.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Kanato Goto ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract Quantum extremal islands reproduce the unitary Page curve of an evaporating black hole. This has been derived by including replica wormholes in the gravitational path integral, but for the transient, evaporating black holes most relevant to Hawking’s paradox, these wormholes have not been analyzed in any detail. In this paper we study replica wormholes for black holes formed by gravitational collapse in Jackiw-Teitelboim gravity, and confirm that they lead to the island rule for the entropy. The main technical challenge is that replica wormholes rely on a Euclidean path integral, while the quantum extremal islands of an evaporating black hole exist only in Lorentzian signature. Furthermore, the Euclidean equations for the Schwarzian mode are non-local, so it is unclear how to connect to the local, Lorentzian dynamics of an evaporating black hole. We address these issues with Schwinger-Keldysh techniques and show how the non-local equations reduce to the local ‘boundary particle’ description in special cases.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Heming Fu ◽  
Wanshi Lu ◽  
Jiawei Guo ◽  
Chengfa Wu

General soliton and (semi-)rational solutions to the y-non-local Mel’nikov equation with non-zero boundary conditions are derived by the Kadomtsev–Petviashvili (KP) hierarchy reduction method. The solutions are expressed in N × N Gram-type determinants with an arbitrary positive integer N . A possible new feature of our results compared to previous studies of non-local equations using the KP reduction method is that there are two families of constraints among the parameters appearing in the solutions, which display significant discrepancies. For even N , one of them only generates pairs of solitons or lumps while the other one can give rise to odd numbers of solitons or lumps; the interactions between lumps and solitons are always inelastic for one family whereas the other family may lead to semi-rational solutions with elastic collisions between lumps and solitons. These differences are illustrated by a thorough study of the solution dynamics for N = 1, 2, 3. Besides, regularities of solutions are discussed under proper choices of parameters.


2020 ◽  
Vol 53 (4) ◽  
pp. 370-401
Author(s):  
Weiwei Ao

2020 ◽  
Vol 11 (2) ◽  
pp. 56-68
Author(s):  
Nurlybek Zhumatayev ◽  
Zhanat Umarova ◽  
Gani Besbayev ◽  
Almira Zholshiyeva

In this work, an attempt has been made to eliminate the contradiction of the Smoluchowski equation, using modern distributed algorithms for creating calculation algorithm and implementation a program for building a more perfect model by changing the type of the kinetic equation of aggregation taking into account the relaxation times. On the basis of the applied Mathcad package, there is a developed computer model for calculating the aggregation of dispersed systems. The obtained system of differential equations of the second order is solved by the Runge-Kutt method. The authors are presetting the initial conditions of the calculation. A subsequent analysis was made of the obtained non-local equations and the study of the behavior of solutions of different orders. Also, this research can be aimed at the generalization of the proposed approach for the analysis of aggregation processes in heterogeneous dispersed systems, involving the creation of aggregation models, taking into account both time and space non-locality.


2019 ◽  
Vol 31 (4) ◽  
pp. 601-645
Author(s):  
WENXIAN SHEN ◽  
ZHONGWEI SHEN

The present paper is devoted to the study of the existence, the uniqueness and the stability of transition fronts of non-local dispersal equations in time heterogeneous media of bistable type under the unbalanced condition. We first study space non-increasing transition fronts and prove various important qualitative properties, including uniform steepness, stability, uniform stability and exponential decaying estimates. Then, we show that any transition front, after certain space shift, coincides with a space non-increasing transition front (if it exists), which implies the uniqueness, up-to-space shifts and monotonicity of transition fronts provided that a space non-increasing transition front exists. Moreover, we show that a transition front must be a periodic travelling front in periodic media and asymptotic speeds of transition fronts exist in uniquely ergodic media. Finally, we prove the existence of space non-increasing transition fronts, whose proof does not need the unbalanced condition.


Sign in / Sign up

Export Citation Format

Share Document