scholarly journals Renormalization group evolution induced leptogenesis in the minimal seesaw model with the trimaximal mixing and mu-tau reflection symmetry

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Zhen-hua Zhao

Abstract In this paper, we consider the imbedding of the popular and well-motivated trimaximal mixing and μ–τ reflection symmetry (which can help us shape the forms of the neutrino mass matrix) in the minimal seesaw model (which contains much fewer parameters than the general seesaw model) with two TeV-scale right-handed neutrinos (for realizing a low-scale seesaw) of nearly degenerate masses (for realizing a resonant leptogenesis). However, either for the trimaximal mixing scenario (which is realized through the Form Dominance approach here) or for the μ–τ reflection symmetry scenario, leptogenesis cannot proceed. To address this issue, we consider the possibility that the special forms of the neutrino mass matrix for the trimaximal mixing and μ–τ reflection symmetry are slightly broken by the renormalization group evolution effect, thus allowing leptogenesis to proceed. It is found that in the normal case of the neutrino mass ordering, the baryon asymmetry thus generated can reproduce the observed value. For completeness, we have also extended our analysis to the scenario that two right-handed neutrinos are not nearly degenerate any more. Unfortunately, in this scenario the final baryon asymmetry is smaller than the observed value by several orders of magnitude.

2016 ◽  
Vol 31 (06) ◽  
pp. 1650008 ◽  
Author(s):  
Rupam Kalita ◽  
Debasish Borah

In this paper, we study all possible neutrino mass matrices with one zero element and two equal nonzero elements, known as hybrid texture neutrino mass matrices. In the diagonal charged lepton basis, we consider 39 such possible cases which are consistent with the latest neutrino data. Using the two constraints on neutrino mass matrix elements imposed by hybrid textures, we numerically evaluate the neutrino parameters like the lightest neutrino mass [Formula: see text], one Dirac CP phase [Formula: see text] and two Majorana CP phases [Formula: see text], [Formula: see text] by using the global fit [Formula: see text] values of three mixing angles and two mass squared differences. We then constrain this parameter space by using the cosmological upper bound on the sum of absolute neutrino masses given by Planck experiment. We also calculate the effective neutrino mass [Formula: see text] for this region of parameter space which can have relevance in future neutrinoless double beta decay experiments. We finally discriminate between these hybrid texture mass matrices from the requirement of producing correct baryon asymmetry through type I seesaw leptogenesis. We also constrain the light neutrino parameter space as well as the lightest right-handed neutrino mass from the constraint on baryon asymmetry of the Universe from Planck experiment.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3660-3667
Author(s):  
Y. H. AHN ◽  
SIN KYU KANG ◽  
C. S. KIM ◽  
T. PHONG NGUYEN

We consider an exact µ-τ reflection symmetry in neutrino sector realized at the GUT scale in the context of the seesaw model with and without supersymmetry. It is shown that the renormalization group (RG) evolution from the GUT scale to the seesaw scale gives rise to breaking of the µ-τ symmetry which is essential to achieve a successful leptogenesis. We show that CP violation responsible for the generation of baryon asymmetry of our universe can be directly linked with CP violation measurable through neutrino oscillation as well as neutrino mixing angles θ12 and θ13.


2019 ◽  
Vol 34 (39) ◽  
pp. 1950329 ◽  
Author(s):  
Newton Nath

The minimal seesaw framework, embroiling the Dirac neutrino mass matrix [Formula: see text] and the Majorana neutrino mass matrix [Formula: see text], is quite successful to explain the current global-fit results of neutrino oscillation data. In this context, we consider the most predictive forms of [Formula: see text] and [Formula: see text] with two simple parameters, respectively. Considering these matrices, we obtain the low-energy neutrino mass matrix under type-I seesaw formalism which obeys [Formula: see text] reflection symmetry and predicts [Formula: see text] and [Formula: see text]. In the given set-up, we also evaluate the Baryon Asymmetry of the Universe (BAU) through successful leptogenesis and find that perturbation of [Formula: see text] leads to the observed BAU and breaks exactness of the symmetry. Moreover, we also perform various correlation studies among different parameters in the framework of broken symmetry.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Shun Zhou

Abstract As is well known, the smallest neutrino mass turns out to be vanishing in the minimal seesaw model, since the effective neutrino mass matrix Mν is of rank two due to the fact that only two heavy right-handed neutrinos are introduced. In this paper, we point out that the one-loop matching condition for the effective dimension-five neutrino mass operator can make an important contribution to the smallest neutrino mass. By using the available one-loop matching condition and two-loop renormalization group equations in the supersymmetric version of the minimal seesaw model, we explicitly calculate the smallest neutrino mass in the case of normal neutrino mass ordering and find m1 ∈ [10−8, 10−10] eV at the Fermi scale ΛF = 91.2 GeV, where the range of m1 results from the uncertainties on the choice of the seesaw scale ΛSS and on the input values of relevant parameters at ΛSS.


2018 ◽  
Vol 96 (1) ◽  
pp. 71-80
Author(s):  
M. Bora ◽  
S. Roy ◽  
N. Nimai Singh

In the context of neutrino oscillation experiments, six different quasi-degenerate neutrino (QDN) mass models, which we parameterized recently, are found equally relevant. The present attempt tries to explore the possibilities for the discrimination of the six QDN models in the light of baryogenesis via leptogenesis. In this work we investigate all six models to predict observable baryon asymmetry. If leptogenesis is unflavoured or single flavoured, a significant difference is found. Then, only QD-NH-IA and QD-IH-IA are dominant. To get specific results, the choice of Dirac neutrino mass matrix as down-quark type is found most favourable.


2001 ◽  
Vol 63 (5) ◽  
Author(s):  
Takahiro Miura ◽  
Tetsuo Shindou ◽  
Eiichi Takasugi ◽  
Masaki Yoshimura

2010 ◽  
Vol 25 (33) ◽  
pp. 2837-2848 ◽  
Author(s):  
S. DEV ◽  
SURENDER VERMA

We investigate the CP asymmetry for a hybrid texture of the neutrino mass matrix predicted by Q8 family symmetry in the context of the type-I seesaw mechanism and examine its consequences for leptogenesis. We, also, calculate the resulting Baryon Asymmetry of the Universe (BAU) for this texture.


2002 ◽  
Vol 17 (26) ◽  
pp. 1725-1734 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
NOBUCHIKA OKADA

We study the leptogenesis scenario in models with multi-Higgs doublets. It is pointed out that the washing-out process through the effective dimension-five interactions, which has not been taken into account seriously in the conventional scenario, can be effective, and the resultant baryon asymmetry can be exponentially suppressed. This fact implies new possible scenario where the observed baryon asymmetry is the remnant of the washed out lepton asymmetry which was originally much larger than the one in the conventional scenario. Our new scenario is applicable to some neutrino mass matrix models which predict too large CP-violating parameter and makes them viable through the washing-out process.


Sign in / Sign up

Export Citation Format

Share Document