porous media burner
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 1)

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1663
Author(s):  
Nazmi Che Ismail ◽  
Mohd Zulkifly Abdullah ◽  
Khairil Faizi Mustafa ◽  
Nurul Musfirah Mazlan ◽  
Prem Gunnasegaran ◽  
...  

Porous media burner (PMB) is widely used in a variety of practical systems, including heat exchangers, gas propulsion, reactors, and radiant burner combustion. However, thorough evaluations of the performance of the PMB based on the usefulness of entropy generation, thermal and exergy efficiency aspects are still lacking. In this work, the concept of a double-layer micro PMB with a 23 mm cylindrical shape burner was experimentally demonstrated. The PMB was constructed based on the utilization of premixed butane-air combustion which consists of an alumina and porcelain foam. The tests were designed to cover lean to rich combustion with equivalence ratios ranging from ϕ = 0.6 to ϕ = 1.2. It was found that the maximum thermal and exergy efficiency was obtained at ϕ = 1.2 while the lowest thermal and exergy efficiency was found at ϕ = 0.8. Furthermore, the findings also indicated that the total entropy generation, energy loss, and exergy destroyed yield the lowest values at ϕ = 1.0 with 0.0048 W/K, 98.084 W, and 1.456 W, respectively. These values can be stated to be the suitable operating conditions of the PMB. The findings provided useful information on the design and operation in a double-layer PMB.


Author(s):  
Sonia Chalia ◽  
Manish Kumar Bharti ◽  
Preeti Thakur ◽  
Atul Thakur ◽  
S.N. Sridhara

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1104
Author(s):  
N. C. Ismail ◽  
M. Z. Abdullah ◽  
N. M. Mazlan ◽  
K. F. Mustafa

The performance of porous media micro-burners plays an important role in determining thermal efficiency and improving our daily life. Nowadays, a lot of scholars are actively involved in this research area and ongoing studies are still being carried out due to the burners’ excellent performance. The exergy efficiency and entropy generation of a porous media burner are strongly dependent on the characteristics of the flame and its thermal behavior. In this study, a single-layer and double-layer porous media form were constructed to investigate the effects of various types of porous foam arrangement in a cylindrical burner. The burner was operated using premixed butane-air combustion with an inner diameter of 23 mm and a length of 100 mm. The experiments were carried out in rich fuel conditions with an equivalence ratio, φ ranging from 1.3 to 2.0. The results showed significant improvement in the thermal and exergy efficiency with an increase in the equivalence ratio in a double-layer compared with a single-layer. The peak temperature recorded was 945.21 °C at φ = 1.3 for a porcelain single-layer, and the highest exergy efficiency was 83.47% at φ = 2.0 for an alumina-porcelain double-layer burner. It was also found that the average temperature of the burner wall decreased with an increase in the equivalence ratios for PMB2 and PMB4, whereas the average wall temperature for PMB3 was largely unaffected by the equivalence ratios. The total entropy generation rate reached the highest value at φ = 2.0 for all PMB configurations, and the highest percentage increase for total entropy generation rate was 46.09% for PMB1. The exergy efficiency for all burners was approximately similar with the highest exergy efficiency achieved by PMB4 (17.65%). In addition, the length and location of the flame with thermal distribution was significantly affected by the equivalence ratio between the single-layer and double-layer porous material. Overall, a double-layer porous media burner showed the best performance calculated based on the second law of thermodynamics when compared with other configurations, and it is ideal for domestic application.


Sign in / Sign up

Export Citation Format

Share Document