bac contigs
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Erika Asamizu ◽  
Kenta Shirasawa ◽  
Hideki Hirakawa ◽  
Shusei Sato ◽  
Satoshi Tabata ◽  
...  

A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, “Heinz 1706.” By referring to the “Heinz 1706” physical map and by eliminating redundant or nonsignificant hits, 28,804 “unique pair ends” and 8,263 “unique ends” were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database.


Genome ◽  
2008 ◽  
Vol 51 (9) ◽  
pp. 673-684 ◽  
Author(s):  
Lu Jiang ◽  
Christina Rønn Ingvardsen ◽  
Thomas Lübberstedt ◽  
Mingliang Xu

Sugarcane mosaic virus (SCMV) is the causal pathogen for a severe mosaic virus disease of maize worldwide. In our previous research, the maize resistance gene analog (RGA) Pic19 and its three cognate BAC contigs were mapped to the same region as the SCMV resistance gene Scmv1. Here we report the isolation and characterization of the Pic19R gene family members from the inbred line FAP1360A, which shows complete resistance to SCMV. Two primer pairs were designed based on the conserved regions among the known Pic19 paralogs and used for rapid amplification of cDNA ends of FAP1360A. Six full-length cDNAs, corresponding to the Pic19R-1 to -6 paralogs, were obtained. Three of them (Pic19R-1 to -3) had uninterrupted coding sequences and were, therefore, regarded as candidates for the Scmv1 gene. A total of 18 positive BAC clones harboring the Pic19R-2 to -5 paralogs were obtained from the FAP1360A BAC library and assembled into two BAC contigs. Two markers, tagging Pic19R-2 and -3 and Pic19R-4, were developed and used to genotype a high-resolution mapping population segregating solely for the Scmv1 locus. Although closely linked, none of these three Pic19R paralogs co-segregated with the Scmv1 locus. Analysis of the Pic19R family indicated that the Pic19R-1 paralog is identical to the known Rxo1 gene conferring resistance to rice bacterial streak disease and none of the other Pic19R paralogs seems to be involved in resistance to SCMV.


2008 ◽  
Vol 58 (4) ◽  
pp. 375-383 ◽  
Author(s):  
Michiharu Nakano ◽  
Tokurou Shimizu ◽  
Hiroshi Fujii ◽  
Takehiko Shimada ◽  
Tomoko Endo ◽  
...  
Keyword(s):  

2007 ◽  
Vol 8 (1) ◽  
pp. 29-32 ◽  
Author(s):  
Etienne Paux ◽  
Fabrice Legeai ◽  
Nicolas Guilhot ◽  
Anne-Françoise Adam-Blondon ◽  
Michaël Alaux ◽  
...  

2007 ◽  
Vol 58 (6) ◽  
pp. 470 ◽  
Author(s):  
P. Moolhuijzen ◽  
D. S. Dunn ◽  
M. Bellgard ◽  
M. Carter ◽  
J. Jia ◽  
...  

Genome sequencing and the associated bioinformatics is now a widely accepted research tool for accelerating genetic research and the analysis of genome structure and function of wheat because it leverages similar work from other crops and plants. The International Wheat Genome Sequencing Consortium addresses the challenge of wheat genome structure and function and builds on the research efforts of Professor Bob McIntosh in the genetics of wheat. Currently, expressed sequence tags (ESTs; ~500 000 to date) are the largest sequence resource for wheat genome analyses. It is estimated that the gene coverage of the wheat EST collection is ~60%, close to that of Arabidopsis, indicating that ~40% of wheat genes are not represented in EST collections. The physical map of the D-genome donor species Aegilops tauschii is under construction (http://wheat.pw.usda.gov/PhysicalMapping). The technologies developed in this analysis of the D genome provide a good model for the approach to the entire wheat genome, namely compiling BAC contigs, assigning these BAC contigs to addresses in a high resolution genetic map, filling in gaps to obtain the entire physical length of a chromosome, and then large-scale sequencing.


2006 ◽  
Vol 112 (6) ◽  
pp. 1132-1142 ◽  
Author(s):  
H.-J. Lu ◽  
J.P. Fellers ◽  
T.L. Friesen ◽  
S.W. Meinhardt ◽  
J.D. Faris

Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Joann Mudge ◽  
Yan Huihuang ◽  
Roxanne L Denny ◽  
Dana K Howe ◽  
Dariush Danesh ◽  
...  

Surveying the soybean genome with 683 bacterial artificial chromosome (BAC) contiguous groups (contigs) anchored by restriction fragment length polymorphisms (RFLPs) enabled us to explore microsyntenic relationships among duplicated regions and also to examine the physical organization of hypomethylated (and presumably gene-rich) genomic regions. Numerous cases where nonhomologous RFLPs hybridized to common BAC clones indicated that RFLPs were physically clustered in soybean, apparently in less than 25% of the genome. By extension, we speculate that most of the genes are clustered in less than 275 M of the soybean genome. Approximately 40%–45% of this gene-rich portion is associated with the RFLP-anchored contigs described in this study. Similarities in genome organization among BAC contigs from duplicate genomic regions were also examined. Homoeologous BAC contigs often exhibited extensive microsynteny. Furthermore, paralogs recovered from duplicate contigs shared 86%–100% sequence identity.Key words: Glycine max, bacterial artifical chromosome, restriction fragment length polymorphism, genome duplication, gene distribution.


Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 141-155 ◽  
Author(s):  
H H Yan ◽  
J Mudge ◽  
D-J Kim ◽  
R C Shoemaker ◽  
D R Cook ◽  
...  

To gain insight into genomic relationships between soybean (Glycine max) and Medicago truncatula, eight groups of bacterial artificial chromosome (BAC) contigs, together spanning 2.60 million base pairs (Mb) in G. max and 1.56 Mb in M. truncatula, were compared through high-resolution physical mapping combined with sequence and hybridization analysis of low-copy BAC ends. Cross-hybridization among G. max and M. truncatula contigs uncovered microsynteny in six of the contig groups and extensive microsynteny in three. Between G. max homoeologous (within genome duplicate) contigs, 85% of coding and 75% of noncoding sequences were conserved at the level of cross-hybridization. By contrast, only 29% of sequences were conserved between G. max and M. truncatula, and some kilobase-scale rearrangements were also observed. Detailed restriction maps were constructed for 11 contigs from the three highly microsyntenic groups, and these maps suggested that sequence order was highly conserved between G. max duplicates and generally conserved between G. max and M. truncatula. One instance of homoeologous BAC contigs in M. truncatula was also observed and examined in detail. A sequence similarity search against the Arabidopsis thaliana genome sequence identified up to three microsyntenic regions in A. thaliana for each of two of the legume BAC contig groups. Together, these results confirm previous predictions of one recent genome-wide duplication in G. max and suggest that M. truncatula also experienced ancient large-scale genome duplications.Key words: Glycine max, Medicago truncatula, Arabidopsis thaliana, conserved microsynteny, genome duplication.


Gene ◽  
2002 ◽  
Vol 295 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Alexander Froschauer ◽  
Cornelia Körting ◽  
Takayuki Katagiri ◽  
Takashi Aoki ◽  
Shuichi Asakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document