wavefront sensing
Recently Published Documents


TOTAL DOCUMENTS

880
(FIVE YEARS 148)

H-INDEX

28
(FIVE YEARS 6)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 132
Author(s):  
Alok Kumar Pandey ◽  
Tanguy Larrieu ◽  
Guillaume Dovillaire ◽  
Sophie Kazamias ◽  
Olivier Guilbaud

Light beams carrying Orbital Angular Momentum (OAM), also known as optical vortices (OV), have led to fascinating new developments in fields ranging from quantum communication to novel light–matter interaction aspects. Even though several techniques have emerged to synthesize these structured-beams, their detection, in particular, single-shot amplitude, wavefront, and modal content characterization, remains a challenging task. Here, we report the single-shot amplitude, wavefront, and modal content characterization of ultrashort OV using a Shack-Hartmann wavefront sensor. These vortex beams are obtained using spiral phase plates (SPPs) that are frequently used for high-intensity applications. The reconstructed wavefronts display a helical structure compatible with the topological charge induced by the SPPs. We affirm the accuracy of the optical field reconstruction by the wavefront sensor through an excellent agreement between the numerically backpropagated and experimentally obtained intensity distribution at the waist. Consequently, through Laguerre–Gauss (LG) decomposition of the reconstructed fields, we reveal the radial and azimuthal mode composition of vortex beams under different conditions. The potential of our method is further illustrated by characterizing asymmetric Gaussian vortices carrying fractional average OAM, and a realtime topological charge measurement at a 10Hz repetition rate. These results can promote Shack-Hartmann wavefront sensing as a single-shot OV characterization tool.


2021 ◽  
Author(s):  
Jesse Cranney ◽  
Angus Guihot ◽  
Jose De Dona ◽  
Francois Rigaut

2021 ◽  
Author(s):  
Nagendra Kumar ◽  
Alika Khare ◽  
Bosanta Ranjan Boruah

Abstract In this paper we propose a zonal wavefront sensing scheme that facilitates wavefront measurement with enhanced sensitivity at the standard video rate. We achieve this enhanced sensitivity by implementing a sequential display of binary holograms described over each zone sampling the incident wavefront with the help of a ferroelectric liquid crystal spatial light modulator. By keeping the number of active zones as 24 and using a camera with an imaging frame rate equal to the binary hologram display rate of the spatial light modulator, we are able to reach the sensing frame rate of 60 Hz. In addition to enhancement in sensitivity, the proposed scheme facilitates zone wise tuning of binary holograms and eliminates the possibility of any crosstalk between adjacent zones. We perform a proof-of-principle experiment that validates the proposed zonal wavefront sensing scheme and demonstrates its advantages.


2021 ◽  
Author(s):  
Qiang Fu ◽  
Hadi Amata ◽  
Benjamin Gerard ◽  
Christian Marois ◽  
Wolfgang Heidrich

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soongyu Yi ◽  
Jin Xiang ◽  
Ming Zhou ◽  
Zhicheng Wu ◽  
Lan Yang ◽  
...  

AbstractThere is a long history of using angle sensors to measure wavefront. The best example is the Shack-Hartmann sensor. Compared to other methods of wavefront sensing, angle-based approach is more broadly used in industrial applications and scientific research. Its wide adoption is attributed to its fully integrated setup, robustness, and fast speed. However, there is a long-standing issue in its low spatial resolution, which is limited by the size of the angle sensor. Here we report a angle-based wavefront sensor to overcome this challenge. It uses ultra-compact angle sensor built from flat optics. It is directly integrated on focal plane array. This wavefront sensor inherits all the benefits of the angle-based method. Moreover, it improves the spatial sampling density by over two orders of magnitude. The drastically improved resolution allows angle-based sensors to be used for quantitative phase imaging, enabling capabilities such as video-frame recording of high-resolution surface topography.


2021 ◽  
Author(s):  
Aleksey V. Chernykh ◽  
Aleksei S. Ezerskii ◽  
Alexandra O. Georgieva ◽  
Nikolay V. Petrov

Sign in / Sign up

Export Citation Format

Share Document