jacobi metric
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Í. D. D. Carvalho ◽  
G. Alencar ◽  
C. R. Muniz

In this paper, we investigate the gravitational bending angle due to the Casimir wormholes, which consider the Casimir energy as the source. Furthermore, some of these Casimir wormholes regard Generalized Uncertainty Principle (GUP) corrections of Casimir energy. We use the Ishihara method for the Jacobi metric, which allows us to study the bending angle of light and massive test particles for finite distances. Beyond the uncorrected Casimir source, we consider many GUP corrections, namely, the Kempf, Mangano and Mann (KMM) model, the Detournay, Gabriel and Spindel (DGS) model, and the so-called type II model for the GUP principle. We also find the deflection angle of light and massive particles in the case of the receiver and the source are far away from the lens. In this case, we also compute the optical scalars: convergence and shear for these Casimir wormholes as a gravitational weak lens. Our self-consistent iterative calculations indicate corrections to the bending angle by Casimir wormholes in the previous paper.


2020 ◽  
Vol 38 (4) ◽  
pp. 045004
Author(s):  
Marcos Argañaraz ◽  
Oscar Lasso Andino
Keyword(s):  

2020 ◽  
Vol 135 (8) ◽  
Author(s):  
Avijit Bera ◽  
Subir Ghosh ◽  
Bibhas Ranjan Majhi

Author(s):  
Zonghai Li ◽  
Junji Jia

Abstract In this paper, we study the weak gravitational deflection of relativistic massive particles for a receiver and source at finite distance from the lens in stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we extend the generalized optical metric method to the generalized Jacobi metric method by using the Jacobi–Maupertuis Randers–Finsler metric. More specifically, we apply the Gauss–Bonnet theorem to the generalized Jacobi metric space and then obtain an expression for calculating the deflection angle, which is related to Gaussian curvature of generalized optical metric and geodesic curvature of particles orbit. In particular, the finite-distance correction to the deflection angle of signal with general velocity in the the Kerr black hole and Teo wormhole spacetimes are considered. Our results cover the previous work of the deflection angle of light, as well as the deflection angle of massive particles in the limit for the receiver and source at infinite distance from the lens object. In Kerr black hole spacetime, we compared the effects due to the black hole spin, the finite-distance of source or receiver, and the relativistic velocity in microlensings and lensing by galaxies. It is found in these cases, the effect of black hole spin is usually a few orders larger than that of the finite-distance and relativistic velocity, while the relative size of the latter two could vary according to the particle velocity, source or observer distance and other lensing parameters.


2017 ◽  
Vol 14 (07) ◽  
pp. 1730002 ◽  
Author(s):  
Sumanto Chanda ◽  
Gary William Gibbons ◽  
Partha Guha

This paper studies the application of the Jacobi–Eisenhart lift, Jacobi metric and Maupertuis transformation to the Kepler system. We start by reviewing fundamentals and the Jacobi metric. Then we study various ways to apply the lift to Kepler-related systems: first as conformal description and Bohlin transformation of Hooke’s oscillator, second in contact geometry and third in Houri’s transformation [T. Houri, Liouville integrability of Hamiltonian systems and spacetime symmetry (2016), www.geocities.jp/football_physician/publication.html ], coupled with Milnor’s construction [J. Milnor, On the geometry of the Kepler problem, Am. Math. Mon. 90 (1983) 353–365] with eccentric anomaly.


Sign in / Sign up

Export Citation Format

Share Document