liouville integrability
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 7 (12) ◽  
pp. 277
Author(s):  
Ivan Galyaev ◽  
Alexey Mashtakov

We consider a natural extension of the Petitot–Citti–Sarti model of the primary visual cortex. In the extended model, the curvature of contours is taken into account. The occluded contours are completed via sub-Riemannian geodesics in the four-dimensional space M of positions, orientations, and curvatures. Here, M=R2×SO(2)×R models the configuration space of neurons of the visual cortex. We study the problem of sub-Riemannian geodesics on M via methods of geometric control theory. We prove complete controllability of the system and the existence of optimal controls. By application of the Pontryagin maximum principle, we derive a Hamiltonian system that describes the geodesics. We obtain the explicit parametrization of abnormal extremals. In the normal case, we provide three functionally independent first integrals. Numerical simulations indicate the existence of one more first integral that results in Liouville integrability of the system.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jaume Llibre ◽  
Yuzhou Tian

<p style='text-indent:20px;'>We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian <inline-formula><tex-math id="M2">\begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document}</tex-math></inline-formula>, being <inline-formula><tex-math id="M3">\begin{document}$ P(q_1, q_2) $\end{document}</tex-math></inline-formula> a homogeneous polynomial of degree <inline-formula><tex-math id="M4">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> of one of the following forms <inline-formula><tex-math id="M5">\begin{document}$ \pm q_1^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 4q_1^3q_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \pm 6q_1^2q_2^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \pm \left(q_1^2+q_2^2\right)^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ \pm q_2^2\left(6q_1^2-q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \pm q_2^2\left(6q_1^2+q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M13">\begin{document}$ \mu&gt;-1/3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ \mu\neq 1/3 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M16">\begin{document}$ \mu \neq \pm 1/3 $\end{document}</tex-math></inline-formula>. We note that any homogeneous polynomial of degree <inline-formula><tex-math id="M17">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> after a linear change of variables and a rescaling can be written as one of the previous polynomials. We remark that for the polynomial <inline-formula><tex-math id="M18">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \mu\in\left\{-5/3, -2/3\right\} $\end{document}</tex-math></inline-formula> we only can prove that it has no a polynomial first integral.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gabriela P. Ovando

<p style='text-indent:20px;'>The goal of this paper is the study of the integrability of the geodesic flow on <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula>-step nilpotent Lie groups, k = 2, 3, when equipped with a left-invariant metric. Liouville integrability is proved in low dimensions. Moreover, it is shown that complete families of first integrals can be constructed with Killing vector fields and symmetric Killing 2-tensor fields. This holds for dimension <inline-formula><tex-math id="M2">\begin{document}$ m\leq 5 $\end{document}</tex-math></inline-formula>. The situation in dimension six is similar in most cases. Several algebraic relations on the Lie algebra of first integrals are explicitly written. Also invariant first integrals are analyzed and several involution conditions are shown.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ning Zhang ◽  
Xi-Xiang Xu

Two integrable hierarchies are derived from a novel discrete matrix spectral problem by discrete zero curvature equations. They correspond, respectively, to positive power and negative power expansions of Lax operators with respect to the spectral parameter. The bi-Hamiltonian structures of obtained hierarchies are established by a pair of Hamiltonian operators through discrete trace identity. The Liouville integrability of the obtained hierarchies is proved. Through a gauge transformation of the Lax pair, a Darboux–Bäcklund transformation is constructed for the first nonlinear different-difference equation in the negative hierarchy. Ultimately, applying the obtained Darboux–Bäcklund transformation, two exact solutions are given by means of mathematical software.


2020 ◽  
pp. 1-38
Author(s):  
JOE PALLISTER

Abstract We consider frieze sequences corresponding to sequences of cluster mutations for affine D- and E-type quivers. We show that the cluster variables satisfy linear recurrences with periodic coefficients, which imply the constant coefficient relations found by Keller and Scherotzke. Viewing the frieze sequence as a discrete dynamical system, we reduce it to a symplectic map on a lower dimensional space and prove Liouville integrability of the latter.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qianqian Yang ◽  
Qiulan Zhao ◽  
Xinyue Li

An integrable lattice hierarchy is derived on the basis of a new matrix spectral problem. Then, some properties of this hierarchy are shown, such as the Liouville integrability, the bi-Hamiltonian structure, and infinitely many conservation laws. After that, the Darboux transformation of the first integrable lattice equation in this hierarchy is constructed. Eventually, the explicitly exact solutions of the integrable lattice equation are investigated via graphs.


2019 ◽  
Vol 47 (1) ◽  
pp. 88-90
Author(s):  
O.I. Mokhov ◽  
N.A. Strizhova

In this work, in the case of three primary fields, a reduction of the associativity equations (the Witten–Dijkgraaf–Verlinde–Verlinde system, see (Witten, 1990, Dijkgraaf et al., 1991, Dubrovin, 1994) with antidiagonal matrix ηij on the set of stationary points of a nondegenerate integral quadratic with respect to the first-order partial derivatives is constructed in an explicit form and its Liouville integrability is proved. In Mokhov’s paper (Mokhov, 1995, Mokhov, 1998), these associativity equations were presented in the form of an integrable nondiagonalizable system of hydrodynamic type. In the papers (Ferapontov, Mokhov, 1996, Ferapontov et al., 1997, Mokhov, 1998), a bi-Hamiltonian representation for these equations and a nondegenerate integral quadratic with respect to the first-order partial derivatives were found. Using Mokhov’s construction on canonical Hamiltonian property of an arbitrary evolutionary system on the set of stationary points of its nondegenerate integral of the papers (Mokhov, 1984, Mokhov, 1987), we construct explicitly the reduction for the integral quadratic with respect to the first-order partial derivatives, found explicitly the Hamiltonian of the corresponding canonical Hamiltonian system. We also found three functionally-independent integrals in involution with respect to the canonical Poisson bracket on the phase space for the constructed reduction of the associativity equations and thus proved the Liouville integrability of this reduction. This work is supported by the Russian Science Foundation under grant No. 18-11-00316.


Author(s):  
Peter Mann

In this chapter, the Hamilton–Jacobi formulation is discussed in two parts: from a generating function perspective and as a variational principle. The Poincaré–Cartan 1-form is derived and solutions to the Hamilton–Jacobi equations are discussed. The canonical action is examined in a fashion similar to that used for analysis in previous chapters. The Hamilton–Jacobi equation is then shown to parallel the eikonal equation of wave mechanics. The chapter discusses Hamilton’s principal function, the time-independent Hamilton–Jacobi equation, Hamilton’s characteristic function, the rectification theorem, the Maupertius action principle and the Hamilton–Jacobi variational problem. The chapter also discusses integral surfaces, complete integral hypersurfaces, completely separable solutions, the Arnold–Liouville integrability theorem, general integrals, the Cauchy problem and de Broglie–Bohm mechanics. In addition, an interdisciplinary example of medical imaging is detailed.


Sign in / Sign up

Export Citation Format

Share Document