scholarly journals Jacobi–Maupertuis metric and Kepler equation

2017 ◽  
Vol 14 (07) ◽  
pp. 1730002 ◽  
Author(s):  
Sumanto Chanda ◽  
Gary William Gibbons ◽  
Partha Guha

This paper studies the application of the Jacobi–Eisenhart lift, Jacobi metric and Maupertuis transformation to the Kepler system. We start by reviewing fundamentals and the Jacobi metric. Then we study various ways to apply the lift to Kepler-related systems: first as conformal description and Bohlin transformation of Hooke’s oscillator, second in contact geometry and third in Houri’s transformation [T. Houri, Liouville integrability of Hamiltonian systems and spacetime symmetry (2016), www.geocities.jp/football_physician/publication.html ], coupled with Milnor’s construction [J. Milnor, On the geometry of the Kepler problem, Am. Math. Mon. 90 (1983) 353–365] with eccentric anomaly.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jaume Llibre ◽  
Yuzhou Tian

<p style='text-indent:20px;'>We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian <inline-formula><tex-math id="M2">\begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document}</tex-math></inline-formula>, being <inline-formula><tex-math id="M3">\begin{document}$ P(q_1, q_2) $\end{document}</tex-math></inline-formula> a homogeneous polynomial of degree <inline-formula><tex-math id="M4">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> of one of the following forms <inline-formula><tex-math id="M5">\begin{document}$ \pm q_1^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 4q_1^3q_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \pm 6q_1^2q_2^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \pm \left(q_1^2+q_2^2\right)^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ \pm q_2^2\left(6q_1^2-q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \pm q_2^2\left(6q_1^2+q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M13">\begin{document}$ \mu&gt;-1/3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ \mu\neq 1/3 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M16">\begin{document}$ \mu \neq \pm 1/3 $\end{document}</tex-math></inline-formula>. We note that any homogeneous polynomial of degree <inline-formula><tex-math id="M17">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> after a linear change of variables and a rescaling can be written as one of the previous polynomials. We remark that for the polynomial <inline-formula><tex-math id="M18">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \mu\in\left\{-5/3, -2/3\right\} $\end{document}</tex-math></inline-formula> we only can prove that it has no a polynomial first integral.</p>


2019 ◽  
Vol 16 (10) ◽  
pp. 1950158 ◽  
Author(s):  
Manuel de León ◽  
Manuel Lainz Valcázar

In this paper, we discuss the singular Lagrangian systems on the framework of contact geometry. These systems exhibit a dissipative behavior in contrast with the symplectic scenario. We develop a constraint algorithm similar to the presymplectic one studied by Gotay and Nester (the geometrization of the well-known Dirac–Bergmann algorithm). We also construct the Hamiltonian counterpart and prove the equivalence with the Lagrangian side. A Dirac–Jacobi bracket is constructed similar to the Dirac bracket.


2021 ◽  
Vol 133 (7) ◽  
Author(s):  
J. C. van der Meer

AbstractThe KS regularization connects the dynamics of the harmonic oscillator to the dynamics of bounded Kepler orbits. Using orbit space reduction, it can be shown that reduced harmonic oscillator orbits can be identified with re-parametrized Kepler orbits by factorizing the KS map as reduction mapping followed by a chart on the reduced phase space. In this note, we will show that also other regularization maps can be obtained this way. In particular, we will show how Moser’s regularization and Ligon–Schaaf regularization are related to KS-regularization. All regularizations are a result of choosing the right invariants to represent the reduced phase space, which is isomorphic to $$T^+S^3$$ T + S 3 , and a chart on this reduced phase space. We show how this opens the way to directly reduce the KS transformed Kepler system and find other regularization maps that are valid for all values of the Keplerian energy similar to Ligon–Schaaf regularization.


2016 ◽  
Vol 43 (2) ◽  
pp. 255-273 ◽  
Author(s):  
Bozidar Jovanovic

We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincar?-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincar?-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative) integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.


2020 ◽  
Vol 65 (10) ◽  
pp. 835
Author(s):  
Yu. P. Stepanovsky

Young Kepler’s daring ideas on the structure of the Solar system are applied to the analysis of planetary distances in the exoplanetary system HD 10180. Using Zhukovsky’s transformation, the essence of the spinor regularization of Kepler’s problem is explained as extracting the square root of an ellipse and using a Kepler eccentric anomaly instead of the usual time. The achievements of Kharkiv radio astronomers in the search for radio recombination lines of Rydberg carbon atoms at the UTR-2 radio telescope are considered. A generalized spinor regularization of the Kepler problem is used to analyze the energy spectra of Rydberg hydrogen atoms in a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document