path topology
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Bipan Zou ◽  
René De Koster ◽  
Yeming Gong ◽  
Xianhao Xu ◽  
Guwen Shen

Many distribution centers use expensive, conveyor-based sorting systems that require large buildings to house them. In areas with tight space, robotic sorting systems offer a new type of solution to sort parcels by destination. Such systems are highly flexible in throughput capacity and are now gradually being introduced, particularly in express companies. This paper studies robotic sorting system with two layouts. The first layout has two tiers: robots drive on the top tier and sort parcels by destination on spiral conveyors connected to roll containers at the lower tier. The second layout has a single tier with input and output points located at the perimeter, connected by robots. For each layout, we consider both the shortest path topology via dual-lane aisles and the detour path topology via single-lane aisles. We build closed queueing networks for performance estimation, design an iterative procedure to investigate robot congestion in the two-tier layout, and use a traffic flow function to estimate robot congestion in the single-tier layout. Random, closest, dedicated, and shortest-queue robot-to-loading-station assignment rules are examined. We validate analytical models by both simulation and a real case of Deppon Express and analyze the optimal system size and operating policies for throughput capacity and operating cost. The results show that the system throughput capacity is significantly affected by robot congestion in the single-tier layout with the detour path topology, but it is only slightly affected in the other systems. A square layout fits the shortest path and a rectangular layout fits the detour path. Both the random assignment rule and the shortest-queue assignment rule are superior for a large number of robots, whereas the dedicated assignment rule is superior for a small number of robots. We apply these insights at Deppon Express for different allocations in peak and off-peak hours. Our analysis shows that a robotic sorting system typically has lower overall annual cost than a traditional cross-belt sorting system when the required throughput capacity is not too large.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 151
Author(s):  
Michele Flammini ◽  
Gianpiero Monaco ◽  
Luca Moscardelli ◽  
Mordechai Shalom ◽  
Shmuel Zaks

All-optical networks transmit messages along lightpaths in which the signal is transmitted using the same wavelength in all the relevant links. We consider the problem of switching cost minimization in these networks. Specifically, the input to the problem under consideration is an optical network modeled by a graph G, a set of lightpaths modeled by paths on G, and an integer g termed the grooming factor. One has to assign a wavelength (modeled by a color) to every lightpath, so that every edge of the graph is used by at most g paths of the same color. A lightpath operating at some wavelength λ uses one Add/Drop multiplexer (ADM) at both endpoints and one Optical Add/Drop multiplexer (OADM) at every intermediate node, all operating at a wavelength of λ. Two lightpaths, both operating at the same wavelength λ, share the ADMs and OADMs in their common nodes. Therefore, the total switching cost due to the usage of ADMs and OADMs depends on the wavelength assignment. We consider networks of ring and path topology and a cost function that is a convex combination α·|OADMs|+(1−α)|ADMs| of the number of ADMs and the number of OADMs deployed in the network. We showed that the problem of minimizing this cost function is NP-complete for every convex combination, even in a path topology network with g=2. On the positive side, we present a polynomial-time approximation algorithm for the problem.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bo Zhang ◽  
Rongji Liao

The application of machine learning touches all activities of human behavior such as computer network and routing packets in LAN. In the field of our research here, emphasis was placed on extracting weights that would affect the speed of the network's response and finding the best path, such as the number of nodes in the path and the congestion on each path, in addition to the cache used for each node. Therefore, the use of these elements in building the neural network is worthy, as is the exploitation of the feed forwarding and the backpropagation in the neural network in order to reach the best prediction for the best path. The goal of the proposed neural network is to minimize the network time delay within the optimization of the packet paths being addressed in this study. The shortest path is considered as the key issue in routing algorithm that can be carried out with real time of path computations. Exploiting the gaps in previous studies, which are represented in the lack of training of the system and the inaccurate prediction as a result of not taking into consideration the hidden layers' feedback, leads to great performance. This study aims to suggest an efficient algorithm that could help in selecting the shortest path to improve the existing methods using weights derived from packet ID and to change neural network iteration simultaneously. In this study, the design of the efficient neural network of appropriate output is discussed in detail including the principles of the network. The findings of the study revealed that exploiting the power of computational system to demonstrate computer simulation is really effective. It is also shown that the system achieved good results when training the neural network system to get 2.4% time delay with 5 nodes in local LAN. Besides, the results showed that the major features of the proposed model will be able to run in real time and are also adaptive to change with path topology.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2890 ◽  
Author(s):  
Oscar E. Bonilla-Manrique ◽  
Julio E. Posada-Roman ◽  
Jose A. Garcia-Souto ◽  
Marta Ruiz-Llata

A sensitive optical microphone for photoacoustic spectroscopy based on the common path topology of a fibre laser Doppler vibrometer (FLDV) using phase-generated carrier demodulation and a slim diaphragm as an acoustic wave transducer was demonstrated. A resonant gas cell was adapted to enhance gas-detection performance and simultaneously provide efficient cancellation of the window background acoustic signal. Ammonia (NH3) was selected as the target gas. The absorption line was experimentally identified using a distributed feedback laser diode emitting at 1530 nm. The linearity and sensitivity of the gas sensor were measured using wavelength modulation spectroscopy with second harmonic detection. A Teflon diaphragm was used to implement the optical microphone, along with the FLDV, showing a minimum detectable pressure of 79.5 μPa/Hz1/2. The noise-equivalent absorption sensitivity for NH3 detection at the absorption line at 1531.7 nm was 1.85 × 10−8 W cm−1 Hz−1/2, and the limit of detection was 785 ppbv.


Author(s):  
Hrishikesh Mane ◽  
S. S. Pande

Abstract This paper presents a curvature based adaptive iso-parametric strategy for the efficient machining of free form surfaces on 5-axis CNC machine using the flat end mill tool. One iso-parametric boundary of the surface is selected as the initial tool path. Set of cutter contact (CC) points are chosen adaptively on the initial tool path considering desired profile tolerance. Adjacent iso-parametric tool paths are computed adaptively based on the scallop height constraint unlike the traditional iso-parametric approach. The path topology is post-processed to generate the part program for 5-axis CNC machine in ISO format. The system was rigorously tested for various case studies by comparing the results with the traditional 5-axis iso-parametric tool path strategy, iso-scallop strategy and iso-planar strategy of a commercial software. Our system was found to generate efficient tool paths in terms of part quality, productivity and memory storage compared to the conventional strategies.


2018 ◽  
Vol 38 (2-3) ◽  
pp. 338-356 ◽  
Author(s):  
Christoforos I Mavrogiannis ◽  
Ross A Knepper

We present a navigation planning framework for dynamic, multi-agent environments, where no explicit communication takes place among agents. Inspired by the collaborative nature of human navigation, our approach encodes the concept of coordination into an agent’s decision making through an inference mechanism about collaborative strategies of collision avoidance. Each such strategy represents a distinct avoidance protocol, prescribing a distinct class of navigation behaviors to agents. We model such classes as equivalence classes of multi-agent path topology, using the formalism of topological braids. This formalism may naturally encode any arbitrarily complex, spatiotemporal, multi-agent behavior, in any environment with any number of agents into a compact representation of dual algebraic and geometric nature. This enables us to construct a probabilistic inference mechanism that predicts the collective strategy of avoidance among multiple agents, based on observation of agents’ past behaviors. We incorporate this mechanism into an online planner that enables an agent to understand a multi-agent scene and determine an action that not only contributes progress towards its destination, but also reduction of the uncertainty of other agents regarding the agent’s role in the emerging strategy of avoidance. This is achieved by picking actions that compromise between energy efficiency and compliance with everyone’s inferred avoidance intentions. We evaluate our approach by comparing against a greedy baseline that only maximizes individual efficiency. Simulation results of statistical significance demonstrate that our planner results in a faster uncertainty decrease that facilitates the decision-making process of co-present agents. The algorithm’s performance highlights the importance of topological reasoning in decentralized, multi-agent planning and appears promising for real-world applications in crowded human environments.


2016 ◽  
Vol 57 (9) ◽  
pp. 092503 ◽  
Author(s):  
Robert J. Low
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document