dispersive limit
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 50 (12) ◽  
pp. 3439-3454 ◽  
Author(s):  
Olivier Asselin ◽  
Leif N. Thomas ◽  
William R. Young ◽  
Luc Rainville

AbstractFast-moving synoptic-scale atmospheric disturbances produce large-scale near-inertial waves in the ocean mixed layer. In this paper, we analyze the distortion of such waves by smaller-scale barotropic eddies, with a focus on the evolution of the horizontal wavevector k under the effects of straining and refraction. The model is initialized with a horizontally uniform (k = 0) surface-confined near-inertial wave, which then evolves according to the phase-averaged model of Young and Ben Jelloul. A steady barotropic vortex dipole is first considered. Shear bands appear in the jet region as wave energy propagates downward and toward the anticyclone. When measured at a fixed location, both horizontal and vertical wavenumbers grow linearly with the time t elapsed since generation such that their ratio, the slope of wave bands, is time independent. Analogy with passive scalar dynamics suggests that straining should result in the exponential growth of |k|. Here instead, straining is ineffective, not only at the jet center, but also in its confluent and diffluent regions. Low modes rapidly escape below the anticyclonic core such that weakly dispersive high modes dominate in the surface layer. In the weakly dispersive limit, k = −t∇ζ(x, y, t)/2 provided that (i) the eddy vertical vorticity ζ evolves according to the barotropic quasigeostrophic equation and (ii) k = 0 initially. In steady flows, straining is ineffective because k is always perpendicular to the flow. In unsteady flows, straining modifies the vorticity gradient and hence k, and may account for significant wave–eddy energy transfers.


2018 ◽  
Vol 848 ◽  
pp. 1073-1097 ◽  
Author(s):  
Jeffrey Knowles ◽  
Harry Yeh

One of the classic analytical predictions of shoaling-wave amplification is Green’s law – the wave amplitude grows proportional to $h^{-1/4}$, where $h$ is the local water depth. Green’s law is valid for linear shallow-water waves unidirectionally propagating in a gradually varying water depth. On the other hand, conservation of mechanical energy shows that the shoaling-wave amplitude of a solitary wave grows like $a\propto h^{-1}$, if the waveform maintains its solitary-wave identity. Nonetheless, some recent laboratory and field measurements indicate that growth of long waves during shoaling is slower than what is predicted by Green’s law. Obvious missing factors in Green’s law are the nonlinearity and frequency-dispersion effects as well as wave reflection from the beach, whereas the adiabatic shoaling process does not recognize the transformation of the waveform on a beach of finite slope and length. Here we first examine this problem analytically based on the variable-coefficient perturbed Korteweg–de Vries equation. Three analytical solutions for different limits are obtained: (1) Green’s law for the linear and non-dispersive limit, (2) the slower amplitude growth rate for the linear and dispersive limit, as well as (3) nonlinear and non-dispersive limit. Then, in order to characterize the shoaling behaviours for a variety of incident wave and beach conditions, we implement a fifth-order pseudo-spectral numerical model for the full water-wave Euler theory. We found that Green’s law is not the norm but is limited to small incident-wave amplitudes when the wavelength is still small in comparison to the beach length scale. In general, the wave amplification rate during shoaling does not follow a power law. When the incident wave is finite, the shoaling amplification becomes faster than that of Green’s law when the ratio of the wavelength to the beach length is small, but becomes slower when the length ratio increases. We also found that the incident wave starts to amplify prior to its crest arriving at the beach toe due to the wave reflection. Other prominent characteristics and behaviours of solitary-wave shoaling are discussed.


2013 ◽  
Vol 255 (8) ◽  
pp. 2196-2219 ◽  
Author(s):  
Luc Molinet ◽  
Yuzhao Wang

2012 ◽  
Vol 86 (18) ◽  
Author(s):  
A. P. Sears ◽  
A. Petrenko ◽  
G. Catelani ◽  
L. Sun ◽  
Hanhee Paik ◽  
...  

2008 ◽  
Vol 25 (3) ◽  
pp. 949-952
Author(s):  
A. -S. F Obada ◽  
H. A Hessian ◽  
A. -B. A Mohamed

Sign in / Sign up

Export Citation Format

Share Document