atmospheric disturbances
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 57)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 29 (1) ◽  
pp. 97-105
Author(s):  
Fernande Krier

Abstract Every day, we are confronted with meteorology, the scientific study of the atmospheric phenomena and their variations. The purpose of this article is to analyze the meteorological events in three languages, Luxemburgish and two other official languages of Luxembourg, French and German. First, we make a detailed inventory of verbs and verbal phrases which we found. Next, they are explained and commented; while there are seventeen items in French and German, there are eighteen in Luxem-burgish; so, the meteorological experiences are organized rather homogeneously. Then we deal with the lexicological specifications. In French, we discover the lightness of the meteorological phenomenon; it is followed by examples of atmospheric disturbances, which exist in German and Luxemburgish, too. A special focus of the article is put on the presentation of metaphorical expressions. Finally, we put the question if two meteorological events can appear at the same time.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 128
Author(s):  
Sudheesh Puthenveettil Gopi ◽  
Maurizio Magarini ◽  
Saeed Hamood Alsamhi ◽  
Alexey V. Shvetsov

The fundamental issue for Beyond fifth Generation (B5G) is providing a pervasive connection to heterogeneous and various devices in smart environments. Therefore, Drones play a vital role in the B5G, allowing for wireless broadcast and high-speed communications. In addition, the drone offers several advantages compared to fixed terrestrial communications, including flexible deployment, robust Line of Sight (LoS) connections, and more design degrees of freedom due to controlled mobility. Drones can provide reliable and high data rate connectivity to users irrespective of their location. However, atmospheric disturbances impact the signal quality between drones and users and degrade the system performance. Considering practical implementation, the location of drones makes the drone–user communication susceptible to several environmental disturbances. In this paper, we evaluate the performance of drone-user connectivity during atmospheric disturbances. Further, a Machine Learning (ML)-assisted algorithm is proposed to adapt to a modulation technique that offers optimal performance during atmospheric disturbances. The results show that, with the algorithm, the system switches to a lower order modulation scheme during higher rain rate and provides reliable communication with optimized data rate and error performance.


2021 ◽  
Author(s):  
Kevin Pham ◽  
Binzheng Zhang ◽  
Kareem Sorathia ◽  
Tong Dang ◽  
Wenbin Wang ◽  
...  

2021 ◽  
Vol 60 (4) ◽  
pp. 333-356
Author(s):  
Vyacheslav Zobin

  The wind and products of snowfalls and rainfalls touching the ground generate the seismic signals. During the decades, the study of seismic signatures of atmospheric disturbances, cyclones, was based on analysis of the ambient seismic noise in the low-frequency range which allowed identification of cyclones and location of the storm position. The methodology of monitoring of the atmospheric events using the short-period seismic signals recorded by a sensor installed at a height of about 4 km above sea level at the summit of dormant volcano Nevado de Colima is proposed. The methodology includes the indication of the seismic signatures of atmospheric disturbances on the daily helicorder displays of seismic signals with following analysis of waveforms, produced by the impact of rainfalls and snowfalls with the ground surface, and their Fourier spectral characteristics. Then, the reconstruction of the passage of the atmospheric events, based on the power spectral densities of the one-hour seismic records, which is performed mutually with the satellite observations. The methodology was applied to study the passage of hurricane Dora and its preceding tropical storm (June 2017) and the cold front system number 25 (January 2018). There were indicated the periods of actions of tropical storm, hurricane, and two stages of the cold front on the helicorder images. Then the characteristic waveforms for each period were selected. Analysis of the spectral characteristics of these waveforms demonstrated that the rainfalls, occurring during the tropical storm, hurricane and the initial stage of the cold front passage, generated the seismic signals within the frequency range between 1.0-1.8 Hz while the snowfall during the second stage of the cold front passage generated the seismic signals within the frequency range between 2.6 and 3.7 Hz. The reconstruction of dynamics of the passage of the atmospheric events based on the power spectral densities of the one-hour seismic records allowed to see the comparable intensity of tropical storm and hurricane, and two stages of the cold front. These results demonstrate a possibility for monitoring the passage of atmospheric disturbances in real time or to perform the reconstruction the dynamics of these events during past time using the short-period seismic signals recorded at the high heights.  


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1164
Author(s):  
Sergey Leble ◽  
Ekaterina Smirnova

Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modelling with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms and other large scale atmospheric phenomena. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on a vertical coordinate, which essentially complicates the diagnostics. The relations connecting perturbations for acoustic and entropy (stationary) modes are analytically established and led to the solvable diagnostic equations. These equations specify acoustic and entropy modes in an arbitrary stratified gas under the condition of stability. The diagnostic relations are independent of time and specify the acoustic and the entropy modes. They provide the ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant within the total accessible heights range. As a prospective model, we consider the diagnostics at the height interval 120–180 km, where the equilibrium temperature of a gas depends linearly on the vertical coordinate. For such a heights range it is possible to proceed with analytical expressions for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy parts for some data are illustrated by the plots for the pure numerical data against those obtained by the model. The total energy of a flow is determined for both approaches and its vertical profiles are compared.


2021 ◽  
Author(s):  
Kevin H Pham ◽  
Binzheng Zhang ◽  
Kareem Sorathia ◽  
Tong Dang ◽  
Wenbin Wang ◽  
...  

2021 ◽  
Vol 10 (4) ◽  
pp. 2088-2099
Author(s):  
Hachemi Chenina ◽  
Djamel Benatia ◽  
M’ Hamed Boulakroune

Laser communication between satellites in the constellation and from the satellites to ground stations offers a gigantic data rate for the users. This principal advantage drives telecom companies to develop this technology to use it like a carrier signal, the most disadvantage of this technology is the need to very complicated pointing systems between the transmitter and the receiver due to a very small beam divergence, continually moving of satellites in orbits and the distance between the satellites (tens of thousands of kilometers). The laser beam suffers continuously from several factors like atmospheric turbulences, internal and external vibrations. All these factors lead to an increase in the bit errors rate and cause degradation in the communication quality. This paper deals with a new method of modelisation of external effects in transmission of signal light from a ground station to the satellite through atmospheric disturbances. Indeed, an in-depth investigation, of the influences of satellite vibrationsinlaser signal transmission between satellites constellation, has been conducted by studying the effect of the intensity of vibrations on the optical signal amplitude. Some solutions are proposed to improve the efficiency of optical satellites communications. 


Author(s):  
Sergey Leble ◽  
Ekaterina Smirnova

Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered and applied to numerical modeling results with the direct possibility to use in atmosphere monitoring especially in such strong events which follow magnetic storms. The study examines a situation in which the stationary equilibrium temperature of a gas may depend on a vertical coordinate, that seriously complicates the problem solution. The relations connecting perturbations for acoustic and entropy modes are analytically established and led to the solvable diagnostic equations. These perturbation structures, found as the equation solutions specify acoustic and entropy modes in an arbitrary stratified gas under the condition of stability. These time-independent diagnostic relations link gas perturbation variables of the acoustic and the entropy modes. Hence, they provide the ability to decompose the total vector of perturbations into acoustic and non-acoustic (entropy) parts uniquely at any instant within the all accessible heights range. As a prospective model, we consider the diagnostics at the height interval [120;180] km, where the equilibrium temperature of a gas depends linearly on the vertical coordinate. For such a heights range it is possible to proceed with analytical expressions for pressure and entropy perturbations of gas variables. Individual profiles of acoustic and entropy parts for some data, obtained by numerical experiment, are illustrated by the plots for the pure numerical data against ones obtained by the model. The total energy of a flow is determined for both approaches and its height profiles are compared.


Sign in / Sign up

Export Citation Format

Share Document