waterless fracturing
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 2)

2021 ◽  
Vol 73 (11) ◽  
pp. 62-63
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30437, “Risk Management and Control for CO2 Waterless Fracturing,” by Siwei Meng, Qinghai Yang, SPE, and Yongwei Duan, PetroChina, et al., prepared for the 2020 Offshore Technology Conference Asia, originally scheduled to be held in Kuala Lumpur, 2–6 November. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. Given shortages and uneven distribution of water resources in China, efforts must be made to develop waterless fracturing techniques. The fluid experiences high pressures and low temperatures during carbon dioxide (CO2) waterless fracturing operations, which can lead to accidents and environmental pollution. In the complete paper, a safety-management approach and a contingency plan for such operations are developed. At the time of writing, this CO2 waterless fracturing methodology has been completed successfully more than 20 times. Surface Process Work Flow of CO2 Waterless Fracturing The basic process of a CO2 waterless fracturing operation is shown in Fig. 1. First, several CO2 storage tanks are connected in parallel. The booster, sealed blender, fracturing pump (all mounted on trunks), and wellhead equipment are connected. The measuring trunk communicates with each vehicle to monitor operation status. Proppant is put into the sealed blender, into which liquid CO2 is injected for pre-cooling. Pump testing is conducted on the high-pressure line and the wellhead and the low-pressure liquid supply line is pressure-tested. Operation does not proceed until pressure-testing results are positive. Afterward, liquid CO2 is injected into formations to fracture them and, moreover, extend created fractures. The sealed blender is enabled to inject prop-pants, and displacement begins after the end of proppant injection. Finally, a series of tasks, including well shut-in for soaking and flowback, is carried out successively.


2021 ◽  
Vol 73 (11) ◽  
pp. 57-57
Author(s):  
Reza Fassihi

As the discovery rate of new hydrocarbon resources decreases, the need for more-efficient enhanced-oil-recovery (EOR) processes increases. Unlike in the past, however, when the efficiency was defined in terms of maximizing the recovery factor (RF), the new interpretation of efficiency is based on optimizing the balance between RF and the reduction of carbon footprint. This is done through an integrated approach in which both surface and subsurface elements of the oil-production systems are used to determine energy efficiency and carbon footprint of a unit volume of oil produced by EOR methods. When choosing traditional EOR methods, new innovations may be needed to arrive at new injectant composition to reduce emissions or make the process more efficient. Adding chemicals to the injectant gas to improve the mobility ratio and increase the sweep efficiency is desirable. One example is the use of hydrogels. These are hydrophilic structures that swell when hydrated. Hydrogels are of interest in EOR because of their ability to respond to stimuli such as pH, temperature, light, and ionic strength. EOR methods that involve use of fresh water are also switching to alternative methods that reduce or remove its usage as part of water sustainability. The produced water could be treated properly to make it suitable for injection. Alternatively, polymers that are effective under high salinity or temperature could be used to deal with injecting saline water. For unconventional reservoirs, waterless fracturing techniques are progressing. Paper SPE 201609 discusses the application of a reversible hydrogel that can be added to the injected carbon dioxide (CO2) stream in order to make it a more-efficient injectant for EOR and, hence, create more opportunity for CO2 storage. Paper SPE 202809 deals with utility of new polymers that are suitable for injection into carbonate reservoirs under high-temperature and ultrahigh-salinity conditions. Finally, paper OTC 30437 discusses ways of mitigating safety risks associated with CO2 waterless fracturing in unconventional reservoirs as part of water sustainability as well as prevention of environmental pollution. Recommended additional reading at OnePetro: www.onepetro.org. SPE 200357 - Fundamental Investigation of Auto-Emulsification of Water in Crude Oil: An Interfacial Phenomenon and Its Pertinence for Low-Salinity EOR by Duboué Jennifer, TotalEnergies, et al. SPE 205118 - Experimental Design and Evaluation of Surfactant Polymer for a Heavy-Oil Field in South of Sultanate of Oman by Ali Reham Al-Jabri, Petroleum Development of Oman, et al. SPE 200256 - Chemical Enhanced Oil Recovery and the Dilemma of More and Cleaner Energy by Rouhi Farajzadeh, Delft University of Technology, et al.


ACS Omega ◽  
2021 ◽  
Author(s):  
Jiaping Tao ◽  
Siwei Meng ◽  
Xu Jin ◽  
Jianguo Xu ◽  
Qinghai Yang ◽  
...  

2020 ◽  
Author(s):  
Majed Almubarak ◽  
Tariq Almubarak ◽  
Jun Hong Ng ◽  
Julio Hernandez ◽  
Hisham Nasr-El-Din

2020 ◽  
Author(s):  
Qinghai Yang ◽  
Siwei Meng ◽  
Chuan Yu ◽  
Tao Fu ◽  
Shi Chen

2020 ◽  
Author(s):  
Siwei Meng ◽  
Qinghai Yang ◽  
Yongwei Duan ◽  
Jiaping Tao ◽  
Shi Chen

2019 ◽  
Vol 158 ◽  
pp. 4586-4591 ◽  
Author(s):  
Meng Siwei ◽  
Liu He ◽  
Yang Qinghai

Author(s):  
Zhaoyang Zhang ◽  
Jincheng Mao ◽  
Xiaojiang Yang ◽  
Jinzhou Zhao ◽  
Gregory S. Smith

Sign in / Sign up

Export Citation Format

Share Document