drain current
Recently Published Documents


TOTAL DOCUMENTS

1640
(FIVE YEARS 377)

H-INDEX

42
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 654
Author(s):  
Shouyi Wang ◽  
Qi Zhou ◽  
Kuangli Chen ◽  
Pengxiang Bai ◽  
Jinghai Wang ◽  
...  

In this work, novel hybrid gate Ultra-Thin-Barrier HEMTs (HG-UTB HEMTs) featuring a wide modulation range of threshold voltages (VTH) are proposed. The hybrid gate structure consists of a p-GaN gate part and a MIS-gate part. Due to the depletion effect assisted by the p-GaN gate part, the VTH of HG-UTB HEMTs can be significantly increased. By tailoring the hole concentration of the p-GaN gate, the VTH can be flexibly modulated from 1.63 V to 3.84 V. Moreover, the MIS-gate part enables the effective reduction in the electric field (E-field) peak at the drain-side edge of the p-GaN gate, which reduces the potential gate degradation originating from the high E-field in the p-GaN gate. Meanwhile, the HG-UTB HEMTs exhibit a maximum drain current as high as 701 mA/mm and correspond to an on-resistance of 10.1 Ω mm and a breakdown voltage of 610 V. The proposed HG-UTB HEMTs are a potential means to achieve normally off GaN HEMTs with a promising device performance and featuring a flexible VTH modulation range, which is of great interest for versatile power applications.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 259
Author(s):  
Bo Wang ◽  
Yanfu Wang ◽  
Ruize Feng ◽  
Haomiao Wei ◽  
Shurui Cao ◽  
...  

In this paper, we have fabricated InGaAs high-electron-mobility transistors (HEMTs) on Si substrates. The InAlAs/InGaAs heterostructures were initially grown on InP substrates by molecular beam epitaxy (MBE), and the adhesive wafer bonding technique was employed to bond the InP substrates to Si substrates, thereby forming high-quality InGaAs channel on Si. The 120 nm gate length device shows a maximum drain current (ID,max) of 569 mA/mm, and the maximum extrinsic transconductance (gm,max) of 1112 mS/mm. The current gain cutoff frequency (fT) is as high as 273 GHz and the maximum oscillation frequency (fMAX) reaches 290 GHz. To the best of our knowledge, the gm,max and the fT of our device are the highest ever reported in InGaAs channel HEMTs on Si substrates at given gate length above 100 nm.


Author(s):  
Akiyoshi Inoue ◽  
Sakura Tanaka ◽  
Takashi Egawa ◽  
Makoto Miyoshi

Abstract In this study, we fabricated and characterized heterojunction field-effect transistors (HFETs) based on an Al0.36Ga0.64N-channel heterostructure with a dual AlN/AlGaInN barrier layer. The device fabrication was accomplished by adopting a regrown n++-GaN layer for ohmic contacts. The fabricated HFETs with a gate length of 2 μm and a gate-to-drain distance of 6 μm exhibited an on-state drain current density as high as approximately 270 mA/mm and an off-state breakdown voltage of approximately 1 kV, which corresponds to an off-state critical electric field of 166 V/μm. This breakdown field, as a comparison in devices without field-plate electrodes, reaches approximately four-fold higher than that for conventional GaN-channel HFETs and was considered quite reasonable as an Al0.36Ga0.64N-channel transistor. It was also confirmed that the devices adopting the dual AlN/AlGaInN barrier layer showed approximately one order of magnitude smaller gate leakage currents than those for devices without the top AlN barrier layer.


2022 ◽  
Author(s):  
Takayuki Gyakushi ◽  
Ikuma Amano ◽  
Atsushi Tsurumaki-Fukuchi ◽  
Masashi Arita ◽  
Yasuo Takahashi

Abstract Multidot single-electron devices (SEDs) can realize new types of computing technologies, such as reconfigurable and reservoir computing. The self-assembled metal nanodot-array film attached with multiple gates is a candidate for use in such SEDs to achieve high functionality. However, the single-electron properties of such a film have not yet been investigated in use with optimally controlled multiple gates because of structural complexity having many nanodots. In this study, Fe nanodot-array-based double-gate SEDs were fabricated and their single-electron properties modulated by the top- and bottom-gate voltages (VT and VB, respectively) were investigated. As reported in our previous study, the drain current (ID) exhibited clear oscillations against VB (i.e., Coulomb blockade oscillation) in a part of the devices, originating from a single dot among several dots. The phase of the Coulomb blockade oscillation systematically shifted with VT, indicating that the charge state of the single dot was clearly controlled by both the gate voltages despite the multidot structure and the metal multidot SED has potential for logic-gate operation. The top and bottom gates affected the electronic state of the dot unevenly owing to the geometrical effect caused by the dot shape and size of the surrounding dots.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
A. Revathy ◽  
C. S. Boopathi ◽  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero

The wider bandgap AlGaN (Eg > 3.4 eV) channel-based high electron mobility transistors (HEMTs) are more effective for high voltage operation. High critical electric field and high saturation velocity are the major advantages of AlGaN channel HEMTs, which push the power electronics to a greater operating regime. In this article, we present the DC characteristics of 0.8 µm gate length (LG) and 1 µm gate-drain distance (LGD) AlGaN channel-based high electron mobility transistors (HEMTs) on ultra-wide bandgap β-Ga2O3 Substrate. The β-Ga2O3 substrate is cost-effective, available in large wafer size and has low lattice mismatch (0 to 2.4%) with AlGaN alloys compared to conventional SiC and Si substrates. A physics-based numerical simulation was performed to investigate the DC characteristics of the HEMTs. The proposed HEMT exhibits sheet charge density (ns) of 1.05 × 1013 cm−2, a peak on-state drain current (IDS) of 1.35 A/mm, DC transconductance (gm) of 277 mS/mm. The ultra-wide bandgap AlGaN channel HEMT on β-Ga2O3 substrate with conventional rectangular gate structure showed 244 V off-state breakdown voltage (VBR) and field plate gate device showed 350 V. The AlGaN channel HEMTs on β-Ga2O3 substrate showed an excellent performance in ION/IOFF and VBR. The high performance of the proposed HEMTs on β-Ga2O3 substrate is suitable for future portable power converters, automotive, and avionics applications.


Author(s):  
Rijo Baby ◽  
Anirudh Venugopalrao ◽  
Hareesh Chandrasekar ◽  
Srinivasan Raghavan ◽  
Muralidharan Rangrajan ◽  
...  

Abstract In this work, we show that a bilayer SiNx passivation scheme which includes a high-temperature annealed SiNx as gate dielectric, significantly improves both ON and OFF state performance of AlGaN/GaN MISHEMTs. From devices with different SiNx passivation schemes, surface and bulk leakage paths were determined. Temperature-dependent MESA leakage studies showed that the surface conduction could be explained using a 2-D variable range hopping mechanism along with the mid-gap interface states at the GaN(cap)/ SiNx interface generated due to the Ga-Ga metal like bonding states. It was found that the high temperature annealed SiNx gate dielectric exhibited the lowest interface state density and a two-step C-V indicative of a superior quality SiNx/GaN interface as confirmed from conductance and capacitance measurements. High-temperature annealing helps in the formation of Ga-N bonding states, thus reducing the shallow metal-like interface states. MISHEMT measurements showed a significant reduction in gate leakage and a 4-orders of magnitude improvement in the ON/OFF ratio while increasing the saturation drain current (IDS) by a factor of 2. Besides, MISHEMTs with 2-step SiNx passivation exhibited a relatively flat transconductance profile, indicative of lower interface states density. The dynamic Ron with gate and drain stressing measurements also showed about 3x improvements in devices with bilayer SiNx passivation.


Silicon ◽  
2022 ◽  
Author(s):  
Marupaka Aditya ◽  
K. Srinivasa Rao ◽  
B. Balaji ◽  
K. Girija Sravani

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Donghoon Kim ◽  
Bo Jin ◽  
Sol-A Kim ◽  
Wonyeong Choi ◽  
Seonghwan Shin ◽  
...  

The highly sensitive detection of peanut allergens (PAs) using silicon-based electrolyte-gated transistors (Si-EGTs) was demonstrated. The Si-EGT was made using a top-down technique. The fabricated Si-EGT showed excellent intrinsic electrical characteristics, including a low threshold voltage of 0.7 V, low subthreshold swing of <70 mV/dec, and low gate leakage of <10 pA. Surface functionalization and immobilization of antibodies were performed for the selective detection of PAs. The voltage-related sensitivity (SV) showed a constant behavior from the subthreshold regime to the linear regime. The current-related sensitivity (SI) was high in the subthreshold regime and then significantly decreased as the drain current increased. The limit of detection (LOD) was calculated to be as low as 25 pg/mL based on SI characteristics, which is the lowest value reported to date in the literature for various sensor methodologies. The Si-EGT showed selective detection of PA through a non-specific control test. These results confirm that Si-EGT is a high-sensitivity and low-power biosensor for PA detection.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 81-86
Author(s):  
I. Yu. Lovshenko ◽  
A. Yu. Voronov ◽  
P. S. Roshchenko ◽  
R. E. Ternov ◽  
Ya. D. Galkin ◽  
...  

The results of the simulation the influence of the proton flux on the electrical characteristics of the device structure of dual-channel high electron mobility field effect transistor based on GaAs are presented. The dependences of the drain current ID and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.


2022 ◽  
pp. 1-11
Author(s):  
Sandeep Kumar Ojha ◽  
Brijesh Kumar

This research paper discusses the significance development in field-induced contact dual-gate organic light emitting transistor (FIC-DGOLET) device architecture and characteristics. The device behaviour is analyzed and observed significant value of electroluminescent efficiency. The deep investigation of FIC-DGOLET device is discussed in this paper, where impact of varying the various parameters such as thickness of organic semiconductor (OSC) materials from the range of 400 nm to 200 nm at altered value of threshold voltage by using 2D ATLAS simulator. Its theoretical calculation influence over the dynamic control of the device characteristics such as saturated drain current (I ds ), mobility (μ), threshold voltage (V th ) as well as sub threshold swing. The FIC-DGOLET is a dual-gate transistor which also emits light by the operations of two accumulated regions, that are electrons and holes which is not completely overlapped to each other. The leakage current in DG-OLET can be reduced to the extent that 70% than single gate OLET (SG-OLET). The recombination zone mechanism of FIC-DGOLET plays a vital role in its performance, where we get comparable value of electroluminescent efficiency with reported, low value of exciton quenching and current densities. The extracted parameters of DG-OLETs are like drive current of 100A, I on/off 108, threshold voltage V th of 1.3 V at V gs of –3 V and V ds of 0 to –3 V. These extracted performance parameters are very helpful in designing of flexible display applications.


Sign in / Sign up

Export Citation Format

Share Document