checkable proof
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Yong Kiam Tan ◽  
Marijn J. H. Heule ◽  
Magnus O. Myreen

AbstractModern SAT solvers can emit independently checkable proof certificates to validate their results. The state-of-the-art proof system that allows for compact proof certificates is propagation redundancy (PR). However, the only existing method to validate proofs in this system with a formally verified tool requires a transformation to a weaker proof system, which can result in a significant blowup in the size of the proof and increased proof validation time. This paper describes the first approach to formally verify PR proofs on a succinct representation; we present (i) a new Linear PR (LPR) proof format, (ii) a tool to efficiently convert PR proofs into LPR format, and (iii) , a verified LPR proof checker developed in CakeML. The LPR format is backwards compatible with the existing LRAT format, but extends the latter with support for the addition of PR clauses. Moreover, is verified using CakeML ’s binary code extraction toolchain, which yields correctness guarantees for its machine code (binary) implementation. This further distinguishes our clausal proof checker from existing ones because unverified extraction and compilation tools are removed from its trusted computing base. We experimentally show that LPR provides efficiency gains over existing proof formats and that the strong correctness guarantees are obtained without significant sacrifice in the performance of the verified executable.


Author(s):  
Randal E. Bryant ◽  
Marijn J. H. Heule

AbstractIn 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in theextended resolutionlogical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such proofs indicate that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it.We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a prototype solver to obtain polynomially sized proofs on benchmarks for the mutilated chessboard and pigeonhole problems—ones that are very challenging for search-based SAT solvers.


Author(s):  
Gerwin Klein ◽  
June Andronick ◽  
Gabriele Keller ◽  
Daniel Matichuk ◽  
Toby Murray ◽  
...  

We present recent work on building and scaling trustworthy systems with formal, machine-checkable proof from the ground up, including the operating system kernel, at the level of binary machine code. We first give a brief overview of the seL4 microkernel verification and how it can be used to build verified systems. We then show two complementary techniques for scaling these methods to larger systems: proof engineering, to estimate verification effort; and code/proof co-generation, for scalable development of provably trustworthy applications. This article is part of the themed issue ‘Verified trustworthy software systems’.


Sign in / Sign up

Export Citation Format

Share Document