subduction wedge
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Piérig Deiller ◽  
Pavla Štípská ◽  
Marc Ulrich ◽  
Karel Schulmann ◽  
Stephen Collett ◽  
...  

2021 ◽  
Vol 559 ◽  
pp. 119919
Author(s):  
Prokop Závada ◽  
Pavla Štípská ◽  
Pavlína Hasalová ◽  
Martin Racek ◽  
Petr Jeřábek ◽  
...  

2020 ◽  
Author(s):  
Giridas Maiti ◽  
Joyjeet Sen ◽  
Nibir Mandal

<p>Subduction zones witness exhumation of deep crustal rocks metamorphosed under high pressure (HP) and ultra-high pressure (UHP) conditions, following burial to depths of 100 km or more. The exhumation dynamics of HP and UHP rocks still remains a lively issue of research in the Earth science community. We develop a new tectonic model based on the lubrication dynamics to show the exhumation mechanism of such deep crustal rocks in convergent tectonic settings. Our model suggests subducting plate motion produces a dynamic pressure in the subduction wedge, which supports the excess gravitational potential energy of the thicker and relatively denser overriding plate partly lying over the buoyant subduction wedge. A drop in the dynamic pressure causes the overriding plate to undergo gravitational collapse and forces the wedge materials to return to the surface. Using lubrication theory we estimate the magnitude of dynamic pressure (<em>P</em>) in the wedge as a function of subduction velocity (<em>u<sub>s</sub></em>), convergence angle (<em>α</em>) and wedge viscosity (<em>µ</em>). We also conduct thermo-mechanical numerical experiments to implement the lubrication model in subduction zones on a real scale. Our analysis suggests that drop in wedge dynamic pressure below a threshold value due to decease in <em>u</em><sub><em>s</em>  </sub>and <em>µ</em>, or by other processes, such as slab rollback and trench retreat facilitate exhumation of deep crustal rocks. Finally we discuss their implications for the exhumation of deep crustal rocks in different subduction setups such as the Himalayan continental subduction, the Mediterranean realm (Calabria–Apennine and Aegean belts) and Western Alps.</p>


2020 ◽  
Author(s):  
Michał Jakubowicz ◽  
Steffen Kiel ◽  
James Goedert ◽  
Jolanta Dopieralska ◽  
Zdzislaw Belka

<p>Stratigraphic and structural context of the early evolution of the Cascadia convergent margin, following major subduction reconfiguration associated with accretion of the igneous Siletzia terrane at 50−45 Ma, remains insufficiently understood. Here, we have applied a novel approach that uses combined Nd, Sr and stable isotope analyses of ancient methane-seep carbonates to constrain the early hydrogeological regime of the Cascadia margin. Analyses included the oldest-known seep deposits of Cascadia, formed during mid-Eocene time (42.5−40.5 Ma). A combination of exceptionally high ε<sub>Nd</sub> and low <sup>87</sup>Sr/<sup>86</sup>Sr signatures observed in these carbonates consistently point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement. Moderately negative δ<sup>13</sup>C<sub>carbonate</sub> values imply thermogenic origin of hydrocarbons at three out of four studied seeps, with likely contribution of biogenic methane at a single, landward-most site. When combined with structural constraints, the recorded signals point to discharges of fluids originating from deep portions of the young subduction wedge, and their channeled ascent through the Siletzia terrane. The results document the presence of a fluid expulsion system indicative of active convergence prior to maturation of typical arc magmatism in the Cascades at 40 Ma. The exceptionally pronounced role of exotic, <sup>143</sup>Nd-enriched, <sup>87</sup>Sr- and <sup>18</sup>O-depleted fluids recorded for early Cascadia reflects its distinctive structural architecture, including the relatively thin sedimentary cover of the young forearc, its extensional tectonics, and the near-trench position of the volcanic terrane that the descending plate-derived fluids must have migrated through prior to reaching the seafloor. </p>


2019 ◽  
Vol 132 (3-4) ◽  
pp. 884-896 ◽  
Author(s):  
Manuel Roda ◽  
Michele Zucali ◽  
Alessandro Regorda ◽  
Maria Iole Spalla

Abstract In the Sesia-Lanzo Zone, Western Alps, the Rocca Canavese Thrust Sheets (RCT) subunit is characterized by a mixture of mantle- and crust-derived lithologies, such as metapelites, metagranitoids, metabasics, and serpentinized mantle slices with sizes ranging from meters to hundreds of meters. Structural and metamorphic history suggests that the RCT rocks experienced a complex evolution. In particular, two different peak conditions were obtained for the metabasics, representing different tectono-metamorphic units (TMUs), namely, D1a under eclogite facies conditions and D1b under lawsonite-blueschist-facies conditions. The two TMUs were coupled during the syn-D2 exhumation stage under epidote-blueschist-facies conditions. The different rocks and metamorphic evolutions and the abundance of serpentinites in the tectonic mixture suggest a possible subduction-related mélange origin for the RCT. To verify whether a subduction-related mélange can record tectono-metamorphic histories similar to that inferred for the RCT, we compare the pressure-temperature evolutions with the results of a 2-D numerical model of ocean-continent subduction with mantle wedge serpentinization. The predictions of the numerical model fully reproduce the two peak conditions (D1a and D1b) and the successive exhumation history of the two TMUs within the subduction wedge. The degree of mixing estimated from field data is consistent with that predicted by the numerical simulation. Finally, the present-day location of the RCT, which marks the boundary between the orogenic wedge (Penninic and Austroalpine domains) and the southern hinterland (Southalpine domain) of the Alpine chain, is reproduced by the model at the end of the exhumation in the subduction wedge. Therefore, the comparison between natural data and the model results confirms the interpretation of the RCT as a subduction-related mélange that occurred during exhumation within a serpentinized mantle wedge.


2012 ◽  
Vol 56-57 ◽  
pp. 39-54 ◽  
Author(s):  
Pierre Lanari ◽  
Stéphane Guillot ◽  
Stéphane Schwartz ◽  
Olivier Vidal ◽  
Pierre Tricart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document