continental subduction
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 67)

H-INDEX

49
(FIVE YEARS 4)

Author(s):  
Jia-Wei Xiong ◽  
Yi-Xiang Chen ◽  
He-Zhi Ma ◽  
Hans-Peter Schertl ◽  
Yong-Fei Zheng ◽  
...  

Author(s):  
Joshua M. Garber ◽  
Matthew Rioux ◽  
Michael P. Searle ◽  
Andrew R.C. Kylander‐Clark ◽  
Bradley R. Hacker ◽  
...  

2021 ◽  
Author(s):  
◽  
Chelsea May Tutt

<p>Mount Tauhara is the largest dacitic volcanic complex of onshore New Zealand and comprises seven subaerial domes and associated lava and pyroclastic flows, with a total exposed volume of ca. 1 km3. The dacites have a complex petrography including quartz, plagioclase, amphibole, orthopyroxene, clinopyroxene, olivine and Fe‐Ti oxides and offer an excellent opportunity to investigate the processes and timescales involved in assembling dacitic magma bodies in a continental subduction zone with in situ and mineral specific analytical techniques. Whole rock major and trace element data and Pb isotopes ratios define linear relationships indicating that the dacites are generated by mixing of silicic and mafic magmas. Two groups of samples define separate mixing trends between four endmembers on the basis of La/Yb ratios, 87Sr/86Sr ratios and Sr contents. The older Western and Central Domes have low 87Sr/86Sr (0.7042‐0.7046) and high LREE/HREE (LaN/YbN = 8.0‐11.5) and Sr (380‐650 ppm) compared to the younger Hipaua, Trig M, Breached and Main Domes, which have higher 87Sr/86Sr (0.7047‐0.7052) and lower LREE/HREE (LaN/YbN = 6.5‐7.5) and Sr (180‐400 ppm). In situ mineral major and trace element chemistry of mineral phases, as well as Sr and Pb isotope ratios of mineral separates have been used to: (i) fingerprint the origin of each crystal phase; (ii) constrain the chemistry of the four endmembers involved in the mixing events and; (iii) estimate the timing of mixing relative to eruption and the ascent rate of the dacitic magmas. The presence of quartz and analyses of quartz‐hosted melt inclusions are used to fingerprint the chemistry of the silicic endmembers, which is a rhyolitic melt with a major element chemistry similar to that of either the Whakamaru Group Ignimbrite melts (Western, Central and Trig M Domes) or intermediate between that of the Whakamaru and the Oruanui Ignimbrite melts (Hipaua, Breached and Main Domes). Similarly, Ba‐Sr concentrations and Sr isotopic signatures of plagioclase show that this phenocryst phase also predominantly crystallized from the rhyolitic melt. Variations in the Mg# and trace element chemistry of clinopyroxenes suggest they were formed both in the mixed dacitic melts and in a mafic endmember. The chemistry of the mafic endmembers have been traced using a combination of back‐calculated Sr melt concentrations from clinopyroxene with the highest Mg# in each sample group, and the linear trends between whole rock SiO2 content and most elements. These results indicate that dacites erupted from the Western and Central Dome were generated by the mixing of a high alumina basalt and a rhyolitic melt and Trig M Dome dacites were generated by the mixing of an andesite with a rhyolitic melt. Magmas erupted from Hipaua, Breached and Main Domes were also produced by the mixing of an andesitic melt and a rhyolitic body with a composition intermediate between that of the Whakamaru and the Oruanui melt bodies. Trace element data and 87Sr/86Sr ratios of amphibole demonstrate that it crystallized from the mixed dacitic melt. Thermobarometric conditions obtained from amphibole indicate that the magma mixing event that produced the dacites occurred within a magma chamber located at ca. 9 km depth and ca. 900°C with the exception of Trig M Dome which occurred deeper at 13 km and 950°C. Diffusion profiles of Ti in quartz and Fe‐Mg in clinopyroxene indicate the magma mixing events occurred < 6 months prior to eruption. Amphibole reaction rims show the magma to have ascended over 2‐3 weeks for each dome, with the exception of Main Dome where reaction rims were not present in the amphibole, suggesting the ascent rate was faster than 0.2 m/s (< 6 hours).</p>


2021 ◽  
Author(s):  
◽  
Chelsea May Tutt

<p>Mount Tauhara is the largest dacitic volcanic complex of onshore New Zealand and comprises seven subaerial domes and associated lava and pyroclastic flows, with a total exposed volume of ca. 1 km3. The dacites have a complex petrography including quartz, plagioclase, amphibole, orthopyroxene, clinopyroxene, olivine and Fe‐Ti oxides and offer an excellent opportunity to investigate the processes and timescales involved in assembling dacitic magma bodies in a continental subduction zone with in situ and mineral specific analytical techniques. Whole rock major and trace element data and Pb isotopes ratios define linear relationships indicating that the dacites are generated by mixing of silicic and mafic magmas. Two groups of samples define separate mixing trends between four endmembers on the basis of La/Yb ratios, 87Sr/86Sr ratios and Sr contents. The older Western and Central Domes have low 87Sr/86Sr (0.7042‐0.7046) and high LREE/HREE (LaN/YbN = 8.0‐11.5) and Sr (380‐650 ppm) compared to the younger Hipaua, Trig M, Breached and Main Domes, which have higher 87Sr/86Sr (0.7047‐0.7052) and lower LREE/HREE (LaN/YbN = 6.5‐7.5) and Sr (180‐400 ppm). In situ mineral major and trace element chemistry of mineral phases, as well as Sr and Pb isotope ratios of mineral separates have been used to: (i) fingerprint the origin of each crystal phase; (ii) constrain the chemistry of the four endmembers involved in the mixing events and; (iii) estimate the timing of mixing relative to eruption and the ascent rate of the dacitic magmas. The presence of quartz and analyses of quartz‐hosted melt inclusions are used to fingerprint the chemistry of the silicic endmembers, which is a rhyolitic melt with a major element chemistry similar to that of either the Whakamaru Group Ignimbrite melts (Western, Central and Trig M Domes) or intermediate between that of the Whakamaru and the Oruanui Ignimbrite melts (Hipaua, Breached and Main Domes). Similarly, Ba‐Sr concentrations and Sr isotopic signatures of plagioclase show that this phenocryst phase also predominantly crystallized from the rhyolitic melt. Variations in the Mg# and trace element chemistry of clinopyroxenes suggest they were formed both in the mixed dacitic melts and in a mafic endmember. The chemistry of the mafic endmembers have been traced using a combination of back‐calculated Sr melt concentrations from clinopyroxene with the highest Mg# in each sample group, and the linear trends between whole rock SiO2 content and most elements. These results indicate that dacites erupted from the Western and Central Dome were generated by the mixing of a high alumina basalt and a rhyolitic melt and Trig M Dome dacites were generated by the mixing of an andesite with a rhyolitic melt. Magmas erupted from Hipaua, Breached and Main Domes were also produced by the mixing of an andesitic melt and a rhyolitic body with a composition intermediate between that of the Whakamaru and the Oruanui melt bodies. Trace element data and 87Sr/86Sr ratios of amphibole demonstrate that it crystallized from the mixed dacitic melt. Thermobarometric conditions obtained from amphibole indicate that the magma mixing event that produced the dacites occurred within a magma chamber located at ca. 9 km depth and ca. 900°C with the exception of Trig M Dome which occurred deeper at 13 km and 950°C. Diffusion profiles of Ti in quartz and Fe‐Mg in clinopyroxene indicate the magma mixing events occurred < 6 months prior to eruption. Amphibole reaction rims show the magma to have ascended over 2‐3 weeks for each dome, with the exception of Main Dome where reaction rims were not present in the amphibole, suggesting the ascent rate was faster than 0.2 m/s (< 6 hours).</p>


Geology ◽  
2021 ◽  
Author(s):  
Dominik Gudelius ◽  
Sonja Aulbach ◽  
Hans-Michael Seitz ◽  
Roberto Braga

Metasomatized mantle wedge peridotites exhumed within high-pressure terranes of continental collision zones provide unique insights into crust-mantle interaction and attendant mass transfer, which are critical to our understanding of terrestrial element cycles. Such peridotites occur in high-grade gneisses of the Ulten Zone in the European Alps and record metasomatism by crustal fluids at 330 Ma and high-pressure conditions (2.0 GPa, 850 °C) that caused a transition from coarse-grained, garnet-bearing to fine-grained, amphibole-rich rocks. We explored the effects of crustal fluids on canonically robust Lu-Hf peridotite isotope signatures in comparison with fluid-sensitive trace elements and Nd-Li isotopes. Notably, we found that a Lu-Hf pseudo-isochron is created by a decrease in bulk-rock 176Lu/177Hf from coarse- to fine-grained peridotite that is demonstrably caused by heavy rare earth element (HREE) loss during fluid-assisted, garnet-consuming, amphibole-forming reactions accompanied by enrichment in fluid-mobile elements and the addition of unradiogenic Nd. Despite close spatial relationships, some peridotite lenses record more intense fluid activity that causes complete garnet breakdown and high field strength element (HFSE) addition along with the addition of crust-derived unradiogenic Hf, as well as distinct chromatographic light REE (LREE) fractionation. We suggest that the observed geochemical and isotopic provinciality between peridotite lenses reflects different positions relative to the crustal fluid source at depth. This interpretation is supported by Li isotopes: inferred proximal peridotites show light δ7Li due to strong kinetic Li isotope fractionation (–4.7–2.0‰) that accompanies Li enrichment, whereas distal peridotites show Li contents and δ7Li similar to those of the depleted mantle (1.0–7.2‰). Thus, Earth’s mantle can acquire significant Hf-Nd-Li-isotopic heterogeneity during locally variable ingress of crustal fluids in continental subduction zones.


2021 ◽  
Author(s):  
Joshua Michael Garber ◽  
Matthew Rioux ◽  
Michael P. Searle ◽  
Andrew Robert Cooper Kylander-Clark ◽  
Bradley R Hacker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document