anterograde and retrograde tracing
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 3)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Vol 15 ◽  
Author(s):  
Shunji Yamada ◽  
Nienke van Kooten ◽  
Takuma Mori ◽  
Katsutoshi Taguchi ◽  
Atsushi Tsujimura ◽  
...  

Neuropeptide Y (NPY) is a neural peptide distributed widely in the brain and has various functions in each region. We previously reported that NPY neurons in the nucleus accumbens (NAc) are involved in the regulation of anxiety behavior. Anterograde and retrograde tracing studies suggest that neurons in the NAc project to several areas, such as the lateral hypothalamus (LH) and ventral pallidum (VP), and receive afferent projections from the cortex, thalamus, and amygdala. However, the neural connections between accumbal NPY neurons and other brain areas in mice remain unclear. In this study, we sought to clarify these anatomical connections of NPY neurons in the NAc by investigating their neural outputs and inputs. To selectively map NPY neuronal efferents from the NAc, we injected Cre-dependent adeno-associated viruses (AAVs) into the NAc of NPY-Cre mice. This revealed that NAc NPY neurons exclusively projected to the LH. We confirmed this by injecting cholera toxin b subunit (CTb), a retrograde tracer, into the LH and found that approximately 7–10% of NPY neurons in the NAc were double-labeled for mCherry and CTb. Moreover, retrograde tracing using recombinant rabies virus (rRABV) also identified NAc NPY projections to the LH. Finally, we investigated monosynaptic input to the NPY neurons in the NAc using rRABV. We found that NPY neurons in the NAc received direct synaptic connections from the midline thalamic nuclei and posterior basomedial amygdala. These findings provide new insight into the neural networks of accumbal NPY neurons and should assist in elucidating their functional roles.


2020 ◽  
Author(s):  
Cole Korponay ◽  
Eun Young Choi ◽  
Suzanne N. Haber

ABSTRACTVentrolateral frontal area 44 is implicated in inhibitory motor functions and facilitating prefrontal control over vocalization. Yet, the corticostriatal circuitry that may contribute to area 44 functions is not clear, as prior investigation of area 44 corticostriatal projections is limited. Here, we used anterograde and retrograde tracing in macaques to map the innervation zone of area 44 corticostriatal projections, quantify their strengths, and evaluate their convergence with corticostriatal projections from non-motor and motor-related frontal regions. First, terminal fields from a rostral area 44 injection site were found primarily in the central caudate nucleus, whereas those from a caudal area 44 injection site were found primarily in the ventrolateral putamen. Second, amongst sampled striatal retrograde injection sites, area 44 input as a percentage of total frontal cortical input was highest in the ventral putamen at the level of the anterior commissure. Third, area 44 projections converged with both orofacial premotor area 6VR and other motor related projections (in the putamen), and with non-motor prefrontal projections (in the caudate nucleus). These findings support the role of area 44 as an interface between motor and non-motor functional domains, possibly facilitated by rostral and caudal area 44 subregions with distinct corticostriatal connectivity profiles.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Cole Korponay ◽  
Eun Young Choi ◽  
Suzanne N Haber

Abstract Ventrolateral frontal area 44 is implicated in inhibitory motor functions and facilitating prefrontal control over vocalization. The contribution of corticostriatal circuits to area 44 functions is unclear, as prior investigation of area 44 projections to the striatum—a central structure in motor circuits—is limited. Here, we used anterograde and retrograde tracing in macaques to map the innervation zone of area 44 corticostriatal projections, quantify their strengths, and evaluate their convergence with corticostriatal projections from other frontal cortical regions. First, whereas terminal fields from a rostral area 44 injection site were found primarily in the central caudate nucleus, those from a caudal area 44 injection site were found primarily in the ventrolateral putamen. Second, amongst sampled injection sites, area 44 input as a percentage of total frontal cortical input was highest in the ventral putamen at the level of the anterior commissure. Third, area 44 projections converged with orofacial premotor area 6VR and other motor-related projections (in the putamen), and with nonmotor prefrontal projections (in the caudate nucleus). Findings support the role of area 44 as an interface between motor and nonmotor functional domains, possibly facilitated by rostral and caudal area 44 subregions with distinct corticostriatal connectivity profiles.


2017 ◽  
Vol 223 (3) ◽  
pp. 1409-1435 ◽  
Author(s):  
Maximilian Schmidt ◽  
Rembrandt Bakker ◽  
Claus C. Hilgetag ◽  
Markus Diesmann ◽  
Sacha J. van Albada

Abstract Cortical network structure has been extensively characterized at the level of local circuits and in terms of long-range connectivity, but seldom in a manner that integrates both of these scales. Furthermore, while the connectivity of cortex is known to be related to its architecture, this knowledge has not been used to derive a comprehensive cortical connectivity map. In this study, we integrate data on cortical architecture and axonal tracing data into a consistent multi-scale framework of the structure of one hemisphere of macaque vision-related cortex. The connectivity model predicts the connection probability between any two neurons based on their types and locations within areas and layers. Our analysis reveals regularities of cortical structure. We confirm that cortical thickness decays with cell density. A gradual reduction in neuron density together with the relative constancy of the volume density of synapses across cortical areas yields denser connectivity in visual areas more remote from sensory inputs and of lower structural differentiation. Further, we find a systematic relation between laminar patterns on source and target sides of cortical projections, extending previous findings from combined anterograde and retrograde tracing experiments. Going beyond the classical schemes, we statistically assign synapses to target neurons based on anatomical reconstructions, which suggests that layer 4 neurons receive substantial feedback input. Our derived connectivity exhibits a community structure that corresponds more closely with known functional groupings than previous connectivity maps and identifies layer-specific directional differences in cortico-cortical pathways. The resulting network can form the basis for studies relating structure to neural dynamics in mammalian cortex at multiple scales.


Sign in / Sign up

Export Citation Format

Share Document