biotinylated dextran
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 5)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Alexander Ríos-Flórez ◽  
Ruthnaldo R. M. Lima ◽  
Paulo Leonardo A. G. Morais ◽  
Helder Henrique Alves de Medeiros ◽  
Jeferson Souza Cavalcante ◽  
...  

AbstractThis study was aimed at establishing the subcorticals substrates of the cognitive and visceromotor circuits of the A32 and A25 cortices of the medial prefrontal cortex and their projections and interactions with subcortical complexes in the common marmoset monkey (Callithrix jacchus). The study was primarily restricted to the nuclei of the diencephalon and amygdala. The common marmoset is a neotropical primate of the new world, and the absence of telencephalic gyrus favors the mapping of neuronal fibers. The biotinylated dextran amine was employed as an anterograde tracer. There was an evident pattern of rostrocaudal distribution of fibers within the subcortical nuclei, with medial orientation. Considering this distribution, fibers originating from the A25 cortex were found to be more clustered in the diencephalon and amygdala than those originating in the A32 cortex. Most areas of the amygdala received fibers from both cortices. In the diencephalon, all regions received projections from the A32, while the A25 fibers were restricted to the thalamus, hypothalamus, and epithalamus at different densities. Precise deposits of neuronal tracers provided here may significantly contribute to expand our understanding of specific connectivity among the medial prefrontal cortex with limbic regions and diencephalic areas, key elements to the viscerocognitive process.


2020 ◽  
Author(s):  
Oswald Steward ◽  
Kelly M Yee ◽  
Mariajose Metcalfe ◽  
Rafer Willenberg ◽  
Juan Luo ◽  
...  

Abstract Rostro-caudal specificity of corticospinal tract (CST) projections from different areas of the cortex was assessed by retrograde labeling with fluorogold and retrograde transfection following retro-AAV/Cre injection into the spinal cord of tdT reporter mice. Injections at C5 led to retrograde labeling of neurons throughout forelimb area of the sensorimotor cortex and a region in the dorsolateral cortex near the barrel field (S2). Injections at L2 led to retrograde labeling of neurons in the posterior sensorimotor cortex (hindlimb area) but not the dorsolateral cortex. With injections of biotinylated dextran amine (BDA) into the main sensorimotor cortex (forelimb region), labeled axons terminated selectively at cervical levels. With BDA injections into caudal sensorimotor cortex (hindlimb region), labeled axons passed through cervical levels without sending collaterals into the gray matter and then elaborated terminal arbors at thoracic sacral levels. With BDA injections into the dorsolateral cortex near the barrel field, labeled axons terminated at high cervical levels. Axons from medial sensorimotor cortex terminated primarily in intermediate laminae and axons from lateral sensorimotor cortex terminated primarily in laminae III–V of the dorsal horn. One of the descending pathways seen in rats (the ventral CST) was not observed in most mice.


2020 ◽  
Author(s):  
Edward T Urban ◽  
Mariko Nishibe ◽  
Scott Barbay ◽  
David J Guggenmos ◽  
Randolph J Nudo

AbstractThe rostral forelimb area (RFA) in the rat is considered to be a premotor cortical region based primarily on its efferent projections to the primary motor cortex. The purpose of the present study was to identify corticocortical connections of RFA, and to describe the relative strength of connections with other cortical areas. This will allow us to better understand the broader cortical network in which RFA participates, and thus, determine its function in motor behavior. In the present study, the RFA of adult male Long-Evans rats (n=6) was identified using intracortical microstimulation techniques and injected with the tract tracer, biotinylated dextran amine (BDA). In post-mortem tissue, location of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. The results demonstrated that the RFA has dense to moderate reciprocal connections with primary motor cortex, the frontal cortex medial and lateral to RFA, primary somatosensory cortex (S1), and lateral somatosensory areas. Importantly, S1 connections were dense to moderate in dysgranular zones, but sparse to negligible in granular zones. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions.


2020 ◽  
Vol 37 ◽  
Author(s):  
Matthias Schmidt

Abstract The nucleus glomerulosus (NG) in paracanthopterygian and acanthopterygian teleost fishes receives afferents from neurons of the nucleus corticalis (NC), whose dendrites extend to the layers, stratum fibrosum et griseum superficiale (SFGS) and stratum griseum centrale (SGC), of the tectum opticum. A re-examination in this study revealed, by means of tracer experiments using biotinylated dextran amine, a separation among both tectal layers, portions of the NC, and target areas in a laminated type of the NG in the South American pufferfish, Colomesus asellus. Neurons of the lateral part of the NC send their dendrites to the SFGS and project to an area located dorsolaterally and centrally in the NG. In contrast, dendrites from neurons of the medial part of the NC run to the SGC, and projections from these neurons terminate in the NG in an area extending from dorsomedial to ventrolateral in the outer portion. Therefore, these two areas in the NG receive input from different sources. The NG in the visual system of tetraodontids may be involved in higher cognitive functions requiring much energy, becoming apparent by its very high level of cytochrome c oxidase activity.


2019 ◽  
Vol 7 (4) ◽  
pp. 1574-1583 ◽  
Author(s):  
Yang Liu ◽  
Junjun Liu ◽  
Jiayi Zhang ◽  
Xiucun Li ◽  
Fangsiyu Lin ◽  
...  

We develop a novel fluorescent nano-neural tracer: BDA–CPDs, which can be anterogradely transported within the peripheral nervous system of rats.


BioTechniques ◽  
2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Michael T. Bethune ◽  
Begoña Comin-Anduix ◽  
Yu-Hsien Hwang Fu ◽  
Antoni Ribas ◽  
David Baltimore

2017 ◽  
Vol 312 (2) ◽  
pp. F343-F351 ◽  
Author(s):  
Michael Rützler ◽  
Aleksandra Rojek ◽  
Mads Vammen Damgaard ◽  
Arne Andreasen ◽  
Robert A. Fenton ◽  
...  

Aquaporin 11 (AQP11) is a channel protein with unknown biological function that is expressed in multiple tissues, including the kidney proximal tubule (PT) epithelium. Constitutive deletion of Aqp11 in mice ( Aqp11−/−) results in early postnatal vacuolization in the PT and development of apparent cysts at 2 wk of age. Electron microscopy of adult Aqp11 −/− mouse PT cells revealed a dilated rough endoplasmic reticulum. These changes may cause renal failure and premature death. This study examined 1) whether postnatal deletion of Aqp11 affects PT injury and cyst formation, 2) the temporal role of Aqp11 deletion on cyst development, and 3) the nature of apparent cysts. Tamoxifen-inducible Aqp11−/− mice were generated (Ti- Aqp11−/−). Deletion of Aqp11 at postnatal days (P) P2, P4, P6, P8, and P12 was investigated. Deranged renal development, especially in kidney cortex, PT cell vacuolization, and apparent tubular cysts developed only in mice where Aqp11 gene disruption was induced until P8. Aqp11 gene deletion from P12 onward did not result in a clear deficiency in renal development, PT injury, or cyst formation. Intraperitoneal injection of biotinylated-dextran (10 kDa) into adult mice resulted in extensive endocytic dextran uptake in both cystic Aqp11−/− and control PT epithelium, respectively. This suggests that apparent cysts are not membrane-enclosed structures but represent PT dilations. We conclude that Aqp11 −/− mice develop cyst-like dilated proximal tubules without documented cysts at time of death.


Sign in / Sign up

Export Citation Format

Share Document