scholarly journals A Self-Learning Based Preference Model for Portfolio Optimization

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2621
Author(s):  
Shicheng Hu ◽  
Danping Li ◽  
Junmin Jia ◽  
Yang Liu

An investment in a portfolio can not only guarantee returns but can also effectively control risk factors. Portfolio optimization is a multi-objective optimization problem. In order to better assist a decision maker to obtain his/her preferred investment solution, an interactive multi-criterion decision making system (MV-IMCDM) is designed for the Mean-Variance (MV) model of the portfolio optimization problem. Considering the flexibility requirement of a preference model that provides a guiding role in MV-IMCDM, a self-learning based preference model DT-PM (decision tree-preference model) is constructed. Compared with the present function based preference model, the DT-PM fully considers a decision maker’s bounded rationality. It does not require an assumption that the decision maker’s preference structure and preference change are known a priori and can be automatically generated and completely updated by learning from the decision maker’s preference feedback. Experimental results of a comparison show that, in the case that the decision maker’s preference structure and preference change are unknown a priori, the performances of guidance and fitness of the DT-PM are remarkably superior to function based preference models; in the case that the decision maker’s preference structure is known a priori, the performances of guidance and fitness of the DT-PM is approximated to the predefined function based model. It can be concluded that the DT-PM can agree with the preference ambiguity and the variability of a decision maker with bounded rationality and be applied more widely in a real decision system.

2021 ◽  
Vol 26 (2) ◽  
pp. 36
Author(s):  
Alejandro Estrada-Padilla ◽  
Daniela Lopez-Garcia ◽  
Claudia Gómez-Santillán ◽  
Héctor Joaquín Fraire-Huacuja ◽  
Laura Cruz-Reyes ◽  
...  

A common issue in the Multi-Objective Portfolio Optimization Problem (MOPOP) is the presence of uncertainty that affects individual decisions, e.g., variations on resources or benefits of projects. Fuzzy numbers are successful in dealing with imprecise numerical quantities, and they found numerous applications in optimization. However, so far, they have not been used to tackle uncertainty in MOPOP. Hence, this work proposes to tackle MOPOP’s uncertainty with a new optimization model based on fuzzy trapezoidal parameters. Additionally, it proposes three novel steady-state algorithms as the model’s solution process. One approach integrates the Fuzzy Adaptive Multi-objective Evolutionary (FAME) methodology; the other two apply the Non-Dominated Genetic Algorithm (NSGA-II) methodology. One steady-state algorithm uses the Spatial Spread Deviation as a density estimator to improve the Pareto fronts’ distribution. This research work’s final contribution is developing a new defuzzification mapping that allows measuring algorithms’ performance using widely known metrics. The results show a significant difference in performance favoring the proposed steady-state algorithm based on the FAME methodology.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Stephanie S. W. Su ◽  
Sie Long Kek

In this paper, the current variant technique of the stochastic gradient descent (SGD) approach, namely, the adaptive moment estimation (Adam) approach, is improved by adding the standard error in the updating rule. The aim is to fasten the convergence rate of the Adam algorithm. This improvement is termed as Adam with standard error (AdamSE) algorithm. On the other hand, the mean-variance portfolio optimization model is formulated from the historical data of the rate of return of the S&P 500 stock, 10-year Treasury bond, and money market. The application of SGD, Adam, adaptive moment estimation with maximum (AdaMax), Nesterov-accelerated adaptive moment estimation (Nadam), AMSGrad, and AdamSE algorithms to solve the mean-variance portfolio optimization problem is further investigated. During the calculation procedure, the iterative solution converges to the optimal portfolio solution. It is noticed that the AdamSE algorithm has the smallest iteration number. The results show that the rate of convergence of the Adam algorithm is significantly enhanced by using the AdamSE algorithm. In conclusion, the efficiency of the improved Adam algorithm using the standard error has been expressed. Furthermore, the applicability of SGD, Adam, AdaMax, Nadam, AMSGrad, and AdamSE algorithms in solving the mean-variance portfolio optimization problem is validated.


Sign in / Sign up

Export Citation Format

Share Document