durable disease resistance
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 477-524
Author(s):  
Anke Martin ◽  
◽  
Barsha Poudel ◽  
Buddhika Amarasinghe Dahanayaka ◽  
Mark S. McLean ◽  
...  

Net blotches are the most widely distributed foliar diseases of barley worldwide, causing significant losses in grain yield. They occur as net form net blotch, caused by Pyrenophora teres f. teres and spot form net blotch caused by P. teres f. maculata. Both sexual and asexual reproduction play a role in the P. teres disease cycles leading to changes in genetic variation of populations. Breeding programs have to keep pace with pathogenic changes and ensure different sources of resistance are present in current barley cultivars. Knowledge of the genetic architecture and genes involved in virulence is thus vital to increase the durability of net blotch resistance in barley cultivars. This chapter explores the molecular biology, life-cycle and epidemiology of the net blotch fungi and discusses the key challenges we are facing in managing the net blotches using both fungicide resistance and breeding strategies to achieve durable disease resistance in barley.


2020 ◽  
Author(s):  
Elise J. Gay ◽  
Jessica L. Soyer ◽  
Nicolas Lapalu ◽  
Juliette Linglin ◽  
Isabelle Fudal ◽  
...  

AbstractThe fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of “two-speed” genome organisms in which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are located in regions enriched in heterochromatin, either constitutive or facultative. These findings provide support for the hypothesis that fungal genes involved in niche adaptation are located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.Author SummaryFungi are extremely important organisms in the global ecosystem. Some are damaging plant pathogens that threaten global food security. A knowledge of their biology and pathogenic cycle is vital for the design of environmentally-friendly control strategies. Unfortunately, many parts of their life cycle remain unknown, due to the complexity of their life-cycles and technical limitations. Here, we use a rapeseed pathogen, Leptosphaeria maculans, which has a particularly complex life-cycle, to show that large-scale RNA-Seq analyses of fungal gene expression can decipher all stages of the fungal cycle over two years of interaction with living or dead hosts, in laboratory and agricultural conditions. We found that the fungus uses about 9% of the genes of its genome specifically during interactions with the plant, and observed waves of extremely tight, complex regulation during the colonization of specific tissues and specific parts of the life-cycle. Our findings highlight the importance of genes encoding effectors, small secreted proteins manipulating the host. This work opens up new avenues for plant disease control through the identification of stage-specific effectors leading to the discovery of novel durable disease resistance genes, or the analysis of epigenetic regulation, which could be manipulated to interfere with effector gene expression.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Feixiong Luo ◽  
Kate Evans ◽  
John L. Norelli ◽  
Zhiwu Zhang ◽  
Cameron Peace

Author(s):  
Vincent G. M. Bus ◽  
◽  
Joanna K. Bowen ◽  
Andrea Patocchi ◽  
Giovanni A. L. Broggini ◽  
...  

Author(s):  
S.G. Monakhos ◽  
A.V. Voronina ◽  
A.V. Baidina ◽  
O.N. Zubko

Одна из ключевых проблем, сдерживающих распространение органических технологий, – экологически безопасная защита растений от болезней и вредителей. В силу выраженной специфики органического земледелия (требования к использованию природоподобных технологий и запрета на использование пестицидов, надежная генетическая устойчивость сортов и гибридов становится одним из основных путей решения этой проблемы. Представлен аналитический обзор современных данных по этой тематике.The role and importance of organic farming in improving the quality of life of humanity are obvious. The one of the key problems limiting the organic technologies is the problem of plant protection against diseases and pests. Due to high specificity of organic farming technologies, particularly the requirements for the use of nature-like technologies and the restrictions on the use of pesticides, durable disease resistance of crops becomes super-actual.


2019 ◽  
Vol 109 (3) ◽  
pp. 332-346 ◽  
Author(s):  
Jennifer Lorang

Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant–microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms’ lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.


2018 ◽  
pp. 1-8
Author(s):  
J. Van Huylenbroeck ◽  
L. Leus ◽  
G. Luypaert ◽  
K. Van Laere

Sign in / Sign up

Export Citation Format

Share Document