connected automated vehicles
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 69)

H-INDEX

8
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Bin Zhao ◽  
Yalan Lin ◽  
Huijun Hao ◽  
Zhihong Yao

To analyze the impact of different proportions of connected automated vehicles (CAVs) on fuel consumption and traffic emissions, this paper studies fuel consumption and traffic emissions of mixed traffic flow with CAVs at different traffic scenarios. Firstly, the car-following modes and proportional relationship of vehicles in the mixed traffic flow are analyzed. On this basis, different car-following models are applied to capture the corresponding car-following modes. Then, Virginia Tech microscopic (VT-micro) model is adopted to calculate the instantaneous fuel consumption and traffic emissions. Finally, based on three typical traffic scenarios, a basic segment with bottleneck zone, ramp of the freeway, and signalized intersection, a simulation platform is built based on Python and SUMO to obtain vehicle trajectory data, and the fuel consumption and traffic emissions in different scenarios are obtained. The results show that (1) In different traffic scenarios, the application of CAVs can reduce fuel consumption and traffic emissions. The higher the penetration rate, the more significant the reduction in fuel consumption and traffic emissions. (2) In the three typical traffic scenarios, the advantages of CAVs are more evident in the signalized intersection. When the penetration rate of CAVs is 100%, the fuel consumption and traffic emissions reduction ratio is as high as 32%. It is noteworthy that the application of CAVs in urban transportation will significantly reduce fuel consumption and traffic emissions.


2021 ◽  
Vol 1 ◽  
pp. 100019
Author(s):  
Jacob Larsson ◽  
Musa Furkan Keskin ◽  
Bile Peng ◽  
Balázs Kulcsár ◽  
Henk Wymeersch

Vehicles ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 533-544
Author(s):  
Hui Zhang ◽  
Rongqing Zhang ◽  
Chen Chen ◽  
Dongliang Duan ◽  
Xiang Cheng ◽  
...  

In this paper, we investigate the intersection traffic management for connected automated vehicles (CAVs). In particular, a decentralized autonomous intersection management scheme that takes into account both the traffic efficiency and scheduling flexibility is proposed, which adopts a novel intersection–vehicle model to check conflicts among CAVs in the entire intersection area. In addition, a priority-based collision-avoidance rule is set to improve the performance of traffic efficiency and shorten the delays of emergency CAVs. Moreover, a multi-objective function is designed to obtain the optimal trajectories of CAVs, which considers ride comfort, velocities of CAVs, fuel consumption, and the constraints of safety, velocity, and acceleration. Simulation results demonstrate that our proposed scheme can achieve good performance in terms of traffic efficiency and shortening the delays of emergency CAVs.


Sign in / Sign up

Export Citation Format

Share Document