coevolutionary history
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Takashi Haramura ◽  
Koshiro Eto ◽  
Michael R. Crossland ◽  
Kanto Nishikawa ◽  
Richard Shine

Abstract Competition within and among species can play a key role in structuring the assemblages of anuran tadpoles. Previous studies have reported that tadpoles of the invasive cane toad (Rhinella marina) are more strongly disadvantaged by the presence of native frog tadpoles than by the same number of conspecific toad tadpoles. That effect might arise from a lack of coevolution of the invasive toad with its competitors; and/or from a generalized superiority of frog tadpoles over toad tadpoles. To clarify those possibilities, we conducted experimental trials using the larvae of a native rather than invasive toad (Bufo japonicus formosus in Japan) exposed to larvae of native anurans (the sympatric frogs Rana japonica and Rana ornativentris and the parapatric toad Bufo japonicus japonicus). In intraspecific competition trials, higher densities of B. j. formosus prolonged the larval period and reduced size at metamorphosis, but did not affect survival. In interspecific competition trials, the effects of the other anuran species on B. j. formosus were similar to the effects of the same number of conspecific larvae. This similarity in impact of interspecific versus intraspecific competition argues against any overall competitive superiority of frog larvae over toad larvae. Instead, the vulnerability of larval cane toads to frog tadpoles may result from a lack of coevolutionary history.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Oskar H Schnaack ◽  
Armita Nourmohammad

The adaptive immune system provides a diverse set of molecules that can mount specific responses against a multitude of pathogens. Memory is a key feature of adaptive immunity, which allows organisms to respond more readily upon re-infections. However, differentiation of memory cells is still one of the least understood cell fate decisions. Here, we introduce a mathematical framework to characterize optimal strategies to store memory to maximize the utility of immune response over an organism's lifetime. We show that memory production should be actively regulated to balance between affinity and cross-reactivity of immune receptors for an effective protection against evolving pathogens. Moreover, we predict that specificity of memory should depend on the organism's lifespan, and shorter-lived organisms with fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a baseline to gauge the efficacy of immune memory in light of an organism's coevolutionary history with pathogens.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Wang ◽  
Xingtan Zhang ◽  
Edward Allen Herre ◽  
Doyle McKey ◽  
Carlos A. Machado ◽  
...  

AbstractFicus (figs) and their agaonid wasp pollinators present an ecologically important mutualism that also provides a rich comparative system for studying functional co-diversification throughout its coevolutionary history (~75 million years). We obtained entire nuclear, mitochondrial, and chloroplast genomes for 15 species representing all major clades of Ficus. Multiple analyses of these genomic data suggest that hybridization events have occurred throughout Ficus evolutionary history. Furthermore, cophylogenetic reconciliation analyses detect significant incongruence among all nuclear, chloroplast, and mitochondrial-based phylogenies, none of which correspond with any published phylogenies of the associated pollinator wasps. These findings are most consistent with frequent host-switching by the pollinators, leading to fig hybridization, even between distantly related clades. Here, we suggest that these pollinator host-switches and fig hybridization events are a dominant feature of fig/wasp coevolutionary history, and by generating novel genomic combinations in the figs have likely contributed to the remarkable diversity exhibited by this mutualism.


2020 ◽  
Vol 69 (6) ◽  
pp. 1149-1162 ◽  
Author(s):  
Mariana P Braga ◽  
Michael J Landis ◽  
Sören Nylin ◽  
Niklas Janz ◽  
Fredrik Ronquist

Abstract Intimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled as a two-step process that may potentially be influenced by host relatedness. We first explore the statistical behavior of our model by simulating evolution of host–parasite interactions under a range of parameter values. We then use our approach, implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and 25 angiosperm families. Our analysis suggests that host relatedness among angiosperm families influences how easily Nymphalini lineages gain new hosts. [Ancestral hosts; coevolution; herbivorous insects; probabilistic modeling.]


2019 ◽  
Vol 44 (4) ◽  
pp. 939-956 ◽  
Author(s):  
Scott E. Solomon ◽  
Christian Rabeling ◽  
Jeffrey Sosa‐Calvo ◽  
Cauê T. Lopes ◽  
André Rodrigues ◽  
...  

2019 ◽  
Author(s):  
Mariana P Braga ◽  
Michael Landis ◽  
Sören Nylin ◽  
Niklas Janz ◽  
Fredrik Ronquist

AbstractIntimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such associations make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled as a two-step process, which may potentially be influenced by host relatedness or host traits. We first explore the statistical behavior of our model by simulating evolution of host-parasite interactions under a range of parameters. We then use our approach, implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and 25 angiosperm families.


Sign in / Sign up

Export Citation Format

Share Document