regularly varying distribution
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2208
Author(s):  
Ekaterina Morozova ◽  
Vladimir Panov

This paper deals with the extreme value analysis for the triangular arrays which appear when some parameters of the mixture model vary as the number of observations grows. When the mixing parameter is small, it is natural to associate one of the components with “an impurity” (in the case of regularly varying distribution, “heavy-tailed impurity”), which “pollutes” another component. We show that the set of possible limit distributions is much more diverse than in the classical Fisher–Tippett–Gnedenko theorem, and provide the numerical examples showing the efficiency of the proposed model for studying the maximal values of the stock returns.


2011 ◽  
Vol 48 (A) ◽  
pp. 133-144 ◽  
Author(s):  
Thomas Mikosch ◽  
Zbyněk Pawlas ◽  
Gennady Samorodnitsky

We prove large deviation results for Minkowski sums Sn of independent and identically distributed random compact sets where we assume that the summands have a regularly varying distribution and finite expectation. The main focus is on random convex compact sets. The results confirm the heavy-tailed large deviation heuristics: ‘large’ values of the sum are essentially due to the ‘largest’ summand. These results extend those in Mikosch, Pawlas and Samorodnitsky (2011) for generally nonconvex sets, where we assumed that the normalization of Sn grows faster than n.


2011 ◽  
Vol 48 (A) ◽  
pp. 133-144 ◽  
Author(s):  
Thomas Mikosch ◽  
Zbyněk Pawlas ◽  
Gennady Samorodnitsky

We prove large deviation results for Minkowski sums S n of independent and identically distributed random compact sets where we assume that the summands have a regularly varying distribution and finite expectation. The main focus is on random convex compact sets. The results confirm the heavy-tailed large deviation heuristics: ‘large’ values of the sum are essentially due to the ‘largest’ summand. These results extend those in Mikosch, Pawlas and Samorodnitsky (2011) for generally nonconvex sets, where we assumed that the normalization of S n grows faster than n.


2009 ◽  
Vol 3 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Jozef Teugels ◽  
Klaus Scheicher

Let (Xi)i?1 be a sequence of positive independent identically distributed random variables with regularly varying distribution tail of index 0 < ? < 1 and define Tn = X1?+X2?+???+Xn?/(X1+X2+???+ Xn)?.In this note we simplify an expression for lim n?? E(T kn ), which was obtained by Albrecher and Teugels: Asymptotic analysis of a measure of variation. Theory Prob. Math. Stat., 74 (2006), 1-9, in terms of coefficients of a continued fraction expansion. The new formula establishes an unexpected link to an enumeration problem for rooted maps on orientable surfaces that was studied in Arqu?s and B?raud: Rooted maps of orientable surfaces, Riccati's equation and continued fractions. Discrete Mathematics, 215 (2000), 1-12.


Author(s):  
Sándor Csörgoő ◽  
David M. Mason

AbstractGiven a sequence of non-negative independent and identically distributed random variables, we determine conditions on the common distribution such that the sum of appropriately normalized and centred upper kn extreme values based on the first n random variables converges in distribution to a normal random variable, where kn → ∞ and kn/ n → 0 as n → ∞. The probabilistic problem is motivated by recent statistical work on the estimation of the exponent of a regularly varying distribution function. Our main tool is a new Brownian bridge approximation to the uniform empirical and quantile processes in weighted supremum norms.


Sign in / Sign up

Export Citation Format

Share Document