scholarly journals Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2208
Author(s):  
Ekaterina Morozova ◽  
Vladimir Panov

This paper deals with the extreme value analysis for the triangular arrays which appear when some parameters of the mixture model vary as the number of observations grows. When the mixing parameter is small, it is natural to associate one of the components with “an impurity” (in the case of regularly varying distribution, “heavy-tailed impurity”), which “pollutes” another component. We show that the set of possible limit distributions is much more diverse than in the classical Fisher–Tippett–Gnedenko theorem, and provide the numerical examples showing the efficiency of the proposed model for studying the maximal values of the stock returns.

2019 ◽  
Vol 34 (2) ◽  
pp. 200-220
Author(s):  
Jingjing Zou ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

AbstractIn this paper, we are concerned with the analysis of heavy-tailed data when a portion of the extreme values is unavailable. This research was motivated by an analysis of the degree distributions in a large social network. The degree distributions of such networks tend to have power law behavior in the tails. We focus on the Hill estimator, which plays a starring role in heavy-tailed modeling. The Hill estimator for these data exhibited a smooth and increasing “sample path” as a function of the number of upper order statistics used in constructing the estimator. This behavior became more apparent as we artificially removed more of the upper order statistics. Building on this observation we introduce a new version of the Hill estimator. It is a function of the number of the upper order statistics used in the estimation, but also depends on the number of unavailable extreme values. We establish functional convergence of the normalized Hill estimator to a Gaussian process. An estimation procedure is developed based on the limit theory to estimate the number of missing extremes and extreme value parameters including the tail index and the bias of Hill's estimator. We illustrate how this approach works in both simulations and real data examples.


Extremes ◽  
2016 ◽  
Vol 19 (3) ◽  
pp. 517-547 ◽  
Author(s):  
Richard A. Davis ◽  
Johannes Heiny ◽  
Thomas Mikosch ◽  
Xiaolei Xie

2014 ◽  
Vol 58 (3) ◽  
pp. 193-207 ◽  
Author(s):  
C Photiadou ◽  
MR Jones ◽  
D Keellings ◽  
CF Dewes

Extremes ◽  
2021 ◽  
Author(s):  
Laura Fee Schneider ◽  
Andrea Krajina ◽  
Tatyana Krivobokova

AbstractThreshold selection plays a key role in various aspects of statistical inference of rare events. In this work, two new threshold selection methods are introduced. The first approach measures the fit of the exponential approximation above a threshold and achieves good performance in small samples. The second method smoothly estimates the asymptotic mean squared error of the Hill estimator and performs consistently well over a wide range of processes. Both methods are analyzed theoretically, compared to existing procedures in an extensive simulation study and applied to a dataset of financial losses, where the underlying extreme value index is assumed to vary over time.


2021 ◽  
Author(s):  
Jeremy Rohmer ◽  
Rodrigo Pedreros ◽  
Yann Krien

<p>To estimate return levels of wave heights (Hs) induced by tropical cyclones at the coast, a commonly-used approach is to (1) randomly generate a large number of synthetic cyclone events (typically >1,000); (2) numerically simulate the corresponding Hs over the whole domain of interest; (3) extract the Hs values at the desired location at the coast and (4) perform the local extreme value analysis (EVA) to derive the corresponding return level. Step 2 is however very constraining because it often involves a numerical hydrodynamic simulator that can be prohibitive to run: this might limit the number of results to perform the local EVA (typically to several hundreds). In this communication, we propose a spatial stochastic simulation procedure to increase the database size of numerical results with synthetic maps of Hs that are stochastically generated. To do so, we propose to rely on a data-driven dimensionality-reduction method, either unsupervised (Principal Component Analysis) or supervised (Partial Least Squares Regression), that is trained with a limited number of pre-existing numerically simulated Hs maps. The procedure is applied to the Guadeloupe island and results are compared to the commonly-used approach applied to a large database of Hs values computed for nearly 2,000 synthetic cyclones (representative of 3,200 years – Krien et al., NHESS, 2015). When using only a hundred of cyclones, we show that the estimates of the 100-year return levels can be achieved with a mean absolute percentage error (derived from a bootstrap-based procedure) ranging between 5 and 15% around the coasts while keeping the width of the 95% confidence interval of the same order of magnitude than the one using the full database. Without synthetic Hs maps augmentation, the error and confidence interval width are both increased by nearly 100%. A careful attention is paid to the tuning of the approach by testing the sensitivity to the spatial domain size, the information loss due to data compression, and the number of cyclones. This study has been carried within the Carib-Coast INTERREG project (https://www.interreg-caraibes.fr/carib-coast).</p>


Sign in / Sign up

Export Citation Format

Share Document