coastal cutthroat trout
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 10)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Anne-Marie Flores ◽  
Morgan M. Davies ◽  
Katrina Kushneryk ◽  
Pippi T.E.S. Lawn ◽  
Sibylla Helms ◽  
...  

Fishes ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Kyle D. Martens ◽  
Jason Dunham

When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions (size and gradient), suggesting that physical conditions may have more of an influence on density than species interactions. Collectively, our analysis, along with a review of findings from prior field and laboratory studies, suggests that the net effect of interactions between coastal cutthroat trout and coho salmon do not appear to inhibit their presence or densities in small streams along the Pacific Northwest.


2019 ◽  
Vol 21 (1) ◽  
pp. 181-186
Author(s):  
Jamie Glasgow ◽  
Jennifer D. De Groot ◽  
Maureen P. Small

AbstractUnderstanding the conservation status of native fish populations is increasingly important because they are put at risk by mounting anthropogenic pressures, including climate change. Conventional approaches to assess fish populations can be logistically challenging and cost-prohibitive. As a result, resource managers often make assumptions about the status of fish populations based on limited information. The watersheds of Washington’s San Juan Islands were considered too small to support wild salmonid populations. Many streams flow only seasonally, and all have been subjected to varying degrees of anthropogenic impacts affecting their ecological integrity. Nonetheless, we found that at least five watersheds in the archipelago support populations of coastal cutthroat trout (Oncorhynchus clarki clarki). To better understand the conservation status of coastal cutthroat trout populations there, we genotyped approximately fifty trout in each of three watersheds: Cascade and Doe Bay creeks on Orcas Island and Garrison Creek on San Juan Island. Results suggest that two watersheds support native populations and one supports naturalized hatchery fish. The likely native coastal cutthroat trout diversity documented in the two watersheds contributes to the overall diversity of the species, demonstrates that species’ resiliency, and provides justification for conservation measures. Effective management and conservation planning in data-limited situations requires the use of a precautionary approach. Population genetics provide a useful tool for identifying vulnerable fish populations and understanding their relationships with other conspecific populations. This information can inform restoration goals and help identify and prioritize restoration and protection measures.


Sign in / Sign up

Export Citation Format

Share Document