ellipsoidal approximations
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 69 (8) ◽  
pp. 708-721
Author(s):  
Annika Hackenberg ◽  
Karl Worthmann ◽  
Torben Pätz ◽  
Dörthe Keiner ◽  
Joachim Oertel ◽  
...  

Abstract Stereotactic neurosurgery requires a careful planning of cannulae paths to spare eloquent areas of the brain that, if damaged, will result in loss of essential neurological function such as sensory processing, linguistic ability, vision, or motor function. We present an approach based on modelling, simulation, and optimization to set up a computational assistant tool. Thereby, we focus on the modeling of the brain topology, where we construct ellipsoidal approximations of voxel clouds based on processed MRI data. The outcome is integrated in a path-planning problem either via constraints or by penalization terms in the objective function. The surgical planning problem with obstacle avoidance is solved for different types of stereotactic cannulae using numerical simulations. We illustrate our method with a case study using real MRI data.


2014 ◽  
Vol 25 (2) ◽  
pp. 255-276 ◽  
Author(s):  
GIUSEPPE ALÌ ◽  
GIOVANNI MASCALI ◽  
VITTORIO ROMANO ◽  
ROSA CLAUDIA TORCASIO

We present the first macroscopical model for charge transport in compound semiconductors to make use of analytic ellipsoidal approximations for the energy dispersion relationships in the neighbours of the lowest minima of the conduction bands. The model considers the main scattering mechanisms charges undergo in polar semiconductors, that is the acoustic, polar optical, intervalley non-polar optical phonon interactions and the ionized impurity scattering. Simulations are shown for the cases of bulk 4H and 6H-SiC.


2011 ◽  
Vol 1 (1) ◽  
pp. 17-24 ◽  
Author(s):  
M. Goli ◽  
M. Najafi-Alamdari

Planar, spherical and ellipsoidal approximations of Poisson's integral in near zonePlanar, spherical, and ellipsoidal approximations of Poisson's integral for downward continuation (DWC) of gravity anomalies are discussed in this study. The planar approximation of Poisson integral is assessed versus the spherical and ellipsoidal approximations by examining the outcomes of DWC and finally the geoidal heights. We present the analytical solution of Poisson's kernel in the point-mean discretization model that speed up computation time 500 times faster than spherical Poisson kernel while preserving a good numerical accuracy. The new formulas are very simple and stable even for regions with very low height. It is shown that the maximum differences between spherical and planar DWC as well as planar and ellipsoidal DWC are about 6 mm and 18 mm respectively in the geoidal heights for a rough mountainous area such as Iran.


Sign in / Sign up

Export Citation Format

Share Document