co2 soil degassing
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 169
Author(s):  
Salvatore Inguaggiato ◽  
Fabio Vita ◽  
Marianna Cangemi ◽  
Claudio Inguaggiato ◽  
Lorenzo Calderone

Since 2016, Stromboli volcano has shown an increase of both frequency and energy of the volcanic activity; two strong paroxysms occurred on 3 July and 28 August 2019. The paroxysms were followed by a series of major explosions, which culminated on January 2021 with magma overflows and lava flows along the Sciara del Fuoco. This activity was monitored by the soil CO2 flux network of Istituto Nazionale di Geofisica e Vulcanologia (INGV), which highlighted significant changes before the paroxysmal activity. The CO2 flux started to increase in 2006, following a long-lasting positive trend, interrupted by short-lived high amplitude transients in 2016–2018 and 2018–2019. This increasing trend was recorded both in the summit and peripheral degassing areas of Stromboli, indicating that the magmatic gas release affected the whole volcanic edifice. These results suggest that Stromboli volcano is in a new critical phase, characterized by a great amount of volatiles exsolved by the shallow plumbing system, which could generate other energetic paroxysms in the future.


2020 ◽  
Vol 10 (14) ◽  
pp. 4757
Author(s):  
Salvatore Inguaggiato ◽  
Fabio Vita ◽  
Marianna Cangemi ◽  
Lorenzo Calderone

Paroxysmal explosions are some of the most spectacular evidence of volcanism on Earth and are triggered by the rapid ascent of volatile-rich magma. These explosions often occur in persistently erupting basaltic volcanoes located in subduction zones and represent a major hazard due to the sudden occurrence and wide impact on the neighboring populations. However, the recognition of signals that forecast these blasts remains challenging even in the best-monitored volcanoes. Here, we present the results of the regular monitoring of soil CO2 flux from a fumarole field at the summit of Stromboli (Italy), highlighting that the 2016–2019 period was characterized by two important phases of strong increases of volatile output rate degassing (24 g m2 d−2 and 32 g m2 d−2, respectively) and moreover by significant changes in the degassing style few months before the last paroxysmal explosions occurred in the summer 2019 (3 July and 28 August). Establish that the deep portions of a volcano plumbing system are refilled by new volatiles-rich magma intruding from the mantle is therefore a key factor for forecasting eruptions and helping in recognizing possible precursors of paroxysmal explosions and could be highlighted by the monitoring of soil CO2 flux. The abrupt increase of degassing rate coupled with the strong increase of fluctuating signal (daily natural deviation) recorded during 2019 at Stromboli could be the key to predicting the occurrence of paroxysmal events.


Radiocarbon ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Jean-Claude Lefevre ◽  
Pierre-Yves Gillot ◽  
Carlo Cardellini ◽  
Marceau Gresse ◽  
Louis Lesage ◽  
...  

AbstractSoil CO2 flux measurement is a key method that can be used to monitor the hazards in an active volcanic area. In order to determine accurately the variations of the CO2 soil emission we propose an approach based on the radiocarbon (14C) deficiency recorded in the plants grown in and around the Solfatara (Naples, Italy). We twice sampled selected poaceae plants in 17 defined sites around the Solfatara volcano. 14C measurements by liquid scintillation counting (LSC) were achieved on the grass samples. The 14C deficiency determined in the sampled plants, compared to the atmosphere 14C activity, ranged from 6.6 to 51.6%. We then compared the proportion of magmatic CO2 inferred to the instantaneous measurements of CO2 fluxes from soil performed by the accumulation chamber CO2 degassing measurement at the moment of the sampling at each site. The results show a clear correlation (r=0.88) between soil CO2 fluxes and 14C activity. The determination of the plants 14C deficiency provides an estimate of the CO2 rate within a few square meters, integrating CO2 soil degassing variations and meteorological incidences over a few months. It can therefore become an efficient bio-sensor and can be used as a proxy to cartography of the soil CO2 and to determine its variations through time


2011 ◽  
Vol 207 (3-4) ◽  
pp. 130-144 ◽  
Author(s):  
M.L. Carapezza ◽  
F. Barberi ◽  
M. Ranaldi ◽  
T. Ricci ◽  
L. Tarchini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document