scholarly journals Changes in CO2 Soil Degassing Style as a Possible Precursor to Volcanic Activity: The 2019 Case of Stromboli Paroxysmal Eruptions

2020 ◽  
Vol 10 (14) ◽  
pp. 4757
Author(s):  
Salvatore Inguaggiato ◽  
Fabio Vita ◽  
Marianna Cangemi ◽  
Lorenzo Calderone

Paroxysmal explosions are some of the most spectacular evidence of volcanism on Earth and are triggered by the rapid ascent of volatile-rich magma. These explosions often occur in persistently erupting basaltic volcanoes located in subduction zones and represent a major hazard due to the sudden occurrence and wide impact on the neighboring populations. However, the recognition of signals that forecast these blasts remains challenging even in the best-monitored volcanoes. Here, we present the results of the regular monitoring of soil CO2 flux from a fumarole field at the summit of Stromboli (Italy), highlighting that the 2016–2019 period was characterized by two important phases of strong increases of volatile output rate degassing (24 g m2 d−2 and 32 g m2 d−2, respectively) and moreover by significant changes in the degassing style few months before the last paroxysmal explosions occurred in the summer 2019 (3 July and 28 August). Establish that the deep portions of a volcano plumbing system are refilled by new volatiles-rich magma intruding from the mantle is therefore a key factor for forecasting eruptions and helping in recognizing possible precursors of paroxysmal explosions and could be highlighted by the monitoring of soil CO2 flux. The abrupt increase of degassing rate coupled with the strong increase of fluctuating signal (daily natural deviation) recorded during 2019 at Stromboli could be the key to predicting the occurrence of paroxysmal events.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 169
Author(s):  
Salvatore Inguaggiato ◽  
Fabio Vita ◽  
Marianna Cangemi ◽  
Claudio Inguaggiato ◽  
Lorenzo Calderone

Since 2016, Stromboli volcano has shown an increase of both frequency and energy of the volcanic activity; two strong paroxysms occurred on 3 July and 28 August 2019. The paroxysms were followed by a series of major explosions, which culminated on January 2021 with magma overflows and lava flows along the Sciara del Fuoco. This activity was monitored by the soil CO2 flux network of Istituto Nazionale di Geofisica e Vulcanologia (INGV), which highlighted significant changes before the paroxysmal activity. The CO2 flux started to increase in 2006, following a long-lasting positive trend, interrupted by short-lived high amplitude transients in 2016–2018 and 2018–2019. This increasing trend was recorded both in the summit and peripheral degassing areas of Stromboli, indicating that the magmatic gas release affected the whole volcanic edifice. These results suggest that Stromboli volcano is in a new critical phase, characterized by a great amount of volatiles exsolved by the shallow plumbing system, which could generate other energetic paroxysms in the future.



Author(s):  
Rose Luiza Moraes Tavares ◽  
Zigomar Menezes de Souza ◽  
Newton La Scala Jr ◽  
Guilherme Adalberto Ferreira Castioni ◽  
Gustavo Soares de Souza ◽  
...  


2005 ◽  
Vol 68 (1) ◽  
pp. 76-90 ◽  
Author(s):  
Jennifer L. Lewicki ◽  
Deborah Bergfeld ◽  
Carlo Cardellini ◽  
Giovanni Chiodini ◽  
Domenico Granieri ◽  
...  


Author(s):  
Fernando Ayala-Niño ◽  
Yolanda Maya-Delgado ◽  
Enrique Troyo-Diéguez ◽  
Pedro P. Garcillán


FLORESTA ◽  
2011 ◽  
Vol 41 (2) ◽  
Author(s):  
Alexandre Fonseca D’Andréa ◽  
Marx Leandro Naves Silva ◽  
Diego Antonio França de Freitas ◽  
Nilton Curi ◽  
Carlos Alberto Silva

A matéria orgânica do solo armazena a maior parte do carbono contido nos sistemas terrestres do planeta, sendo a maioria encontrada nos solos com floresta. O objetivo deste trabalho foi quantificar o fluxo de CO2 do solo e a sua variabilidade espacial em povoamento de Eucalyptus sp. Foram avaliados o fluxo de CO2 do solo, fatores ambientais (evaporação de água, temperatura e umidade do solo), atributos relacionados à fertilidade (pH, soma de bases e alumínio trocável), estrutura (densidade do solo e porosidade total) e matéria orgânica do solo (carbono orgânico total e carbono da biomassa microbiana). Análises de correlação linear simples indicaram que parte da variabilidade espacial do fluxo de CO2 do solo pode ser explicada pelo efeito conjunto do teor de carbono orgânico do solo, da biomassa da serapilheira e da presença de árvores no terreno, indicativas da participação de fatores bióticos no processo. No entanto, o fluxo de CO2 do solo é um fenômeno de natureza complexa, não sendo possível identificar um único atributo do solo ou do ambiente que, isoladamente, explique sua variação no espaço.Palavras-chave: Matéria orgânica; fatores ambientais; fertilidade; carbono; respiração do solo.AbstractSoil CO2 flux spatial variability on eucalyptus manmade forest.  The organic matter on soil retains most of carbon contained in the planet terrestrial systems, specially in forest soils. The aim of this work was to quantify soil CO2 flux and its spatial variability on Eucalyptus sp. manmade forest. In order to that, soil CO2 flux, environmental factors (water evaporation, soil temperature and moisture), fertility attributes (pH, bases sum and exchangeable aluminum), structure (bulk density and total porosity), and soil organic matter (total organic carbon and microbial biomass carbon) were evaluated. Simple linear correlation analyses indicated that part of the spatial variability of soil CO2 flux can be explained by the associated effect of soil organic carbon amount, litter biomass and presence of trees, indicatives of participation of biotic factors in the process. However, the soil CO2 flux is a complex phenomenon, been impossible to identify a single soil or environmental attribute, which, individually, could explain its spatial variability. Keywords: Organic matter; environmental factors; fertility; carbon; linear correlation. 





2012 ◽  
Vol 36 (2) ◽  
pp. 421-426 ◽  
Author(s):  
Walane Maria Pereira de Mello Ivo ◽  
Ignacio Hernán Salcedo

A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.



Tellus B ◽  
2005 ◽  
Vol 57 (1) ◽  
pp. 1-11 ◽  
Author(s):  
LULIE MELLING ◽  
RYUSUKE HATANO ◽  
KAH JOO GOH


Sign in / Sign up

Export Citation Format

Share Document