sciara del fuoco
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 13 (11) ◽  
pp. 2043
Author(s):  
Daniele Casalbore ◽  
Federico Di Traglia ◽  
Alessandro Bosman ◽  
Claudia Romagnoli ◽  
Nicola Casagli ◽  
...  

Stromboli is an active insular volcano located in the Southern Tyrrhenian Sea and its recent volcanic activity is mostly confined within the Sciara del Fuoco (SdF, hereafter), a 2-km wide subaerial–submarine collapse scar, which morphologically dominates the NW flank of the edifice. In August-November 2014, an effusive eruption occurred along the steep SdF slope, with multiple lava flows reaching the sea. The integration of multisensor remote sensing data, including lidar, photogrammetric, bathymetric surveys coupled with SAR amplitude images collected before and after the 2014 eruption enabled to reconstruct the dynamics of the lava flows through the main morphological changes of the whole SdF slope. Well-defined and steep-sided ridges were created by lava flows during the early stages of the eruption, when effusion rates were high, favoring the penetration into the sea of lava flows as coherent bodies. Differently, fan-shaped features were emplaced during the declining stage of the eruption or in relation to lava overflows and associated gravel flows, suggesting the prevalence of volcaniclastic breccias with respect to coherent lava flows. The estimated volume of eruptive products emplaced on the SdF slope during the 2014 eruption, accounts for about 3.7 × 106 m3, 18% of which is in the submarine setting. This figure is different with respect to the previous 2007 eruption at Stromboli, when a large lava submarine delta formed. This discrepancy can be mainly related to the different elevation of the main vents feeding lava flows during the 2007 eruption (around 400 m) and the 2014 eruption (around 650 m). Besides slope accretion, instability processes were detected both in the subaerial and submarine SdF slope. Submarine slope failure mobilized at least 6 × 105 m3 of volcaniclastic material, representing the largest instability event detected since the 2007 lava delta emplacement.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 169
Author(s):  
Salvatore Inguaggiato ◽  
Fabio Vita ◽  
Marianna Cangemi ◽  
Claudio Inguaggiato ◽  
Lorenzo Calderone

Since 2016, Stromboli volcano has shown an increase of both frequency and energy of the volcanic activity; two strong paroxysms occurred on 3 July and 28 August 2019. The paroxysms were followed by a series of major explosions, which culminated on January 2021 with magma overflows and lava flows along the Sciara del Fuoco. This activity was monitored by the soil CO2 flux network of Istituto Nazionale di Geofisica e Vulcanologia (INGV), which highlighted significant changes before the paroxysmal activity. The CO2 flux started to increase in 2006, following a long-lasting positive trend, interrupted by short-lived high amplitude transients in 2016–2018 and 2018–2019. This increasing trend was recorded both in the summit and peripheral degassing areas of Stromboli, indicating that the magmatic gas release affected the whole volcanic edifice. These results suggest that Stromboli volcano is in a new critical phase, characterized by a great amount of volatiles exsolved by the shallow plumbing system, which could generate other energetic paroxysms in the future.


2021 ◽  
Author(s):  
Irene Manzella ◽  
Symeon Makris ◽  
Federico Di Traglia ◽  
Karim Kelfoun ◽  
Paul Cole ◽  
...  

<p>As demonstrated by the Anak Krakatau eruption-induced flank collapse in 2018 in Indonesia, tsunamis generated by large mass flows like landslides and pyroclastic density currents can have devastating effects in volcanic areas. However, these phenomena are still poorly understood as they are unusual and complex events, largely unpredictable and often poorly constrained. </p><p>Stromboli is one of the most active volcanoes in the world, extensively monitored and studied in the last few decades. Many tsunamigenic landslides (sub-aerial and/or submarine) have taken place; at least seven have occurred in the last 150 years and a devastating one is believed to have reached the coast of Naples, at more than 200 km distance, during the Middle Ages. Because the level of activity of the volcano has remained similar ever since and the likelihood of such disastrous events is not negligible, the hazard related to tsunamigenic mass flows in this area needs to be carefully assessed.</p><p>Associated with the 3<sup>rd</sup> of July 2019 eruption, at least three mass flows were triggered along the Sciara del Fuoco slope; two subaerial Pyroclastic density currents (PDCs) and a submarine landslide. Simultaneously, three buoys registered the height of the resulting tsunami wave ranging from 0.2 m in front of the Ginostra village to 1.5 m in front of the Sciara del Fuoco. Thanks to the dense monitoring network and the accurate bathymetry survey carried out by the IGAG-CNR, these events have been well constrained. </p><p>The tsunami waves studied here are smaller than those that could constitute a threat for the population living in this area, nevertheless they can be used to characterize the behaviour of the tsunamigenic mass flows. Back analysis of these events were undertaken with the two-fluids version of VolcFlow; this is a continuum mechanics model based on the depth-average approximation that has been developed for the simulation of volcanic flows. VolcFlow can take into account several different rheologies for each of the two fluids. In the present case, one fluid was used for the water body and one for simulating the mass flow. For the latter one, a constant retaining stress type of rheology was used (Dade and Huppert, 1998). Backanalysis suggested that it was the PDC which generated the tsunami wave during the events of July 2019 and best fitting simulations identified a constant retaining stress of 7kPa. With these input parameters it has been possible to run a large number of numerical simulations of possible scenarios. This has allowed to assess threshold values of volume and discharge of mass flows which could generate significant and potentially destructive tsunami waves. This constitutes an important input to improve early warning systems and to reduce the risk related to these unpredictable but extremely dangerous phenomena.</p>


2021 ◽  
Author(s):  
Federico Di Traglia ◽  
Claudio De Luca ◽  
Alessandro Fornaciai ◽  
Mariarosaria Manzo ◽  
Teresa Nolesini ◽  
...  

<p>Steep-slope volcanoes are geomorphological systems receptive to both exogenous and endogenous phenomena. Volcanic activity produces debris and lava accumulation, whereas magmatic/tectonic and gravitational processes can have a destructive effect, triggering mass-wasting and erosion.</p><p>Optical and radar sensors have often been used to identify areas impacted by eruptive and post-eruptive phenomena, quantify of topographic changes, and/or map ground deformation related to magmatic-tectonic-gravitational processes.</p><p>In this work, the slope processes on high-gradient volcano flanks in response to shift in volcanic activity have been identified by means of remote sensing techniques. The Sciara del Fuoco unstable flank of Stromboli volcano (Italy) was studied, having a very large set (2010-2020) of different remote sensing data available.</p><p>Data includes LiDAR and tri-stereo PLEIADES-1 DEMs, high-spatial-resolution (HSR) optical imagery (QUICKBIRD and PLEIADES-1), and space-borne and ground-based Synthetic Aperture Radar (SAR) data. Multi-temporal DEMs and HSR optical imagery permits to map areas affected by major lithological and morphological changes, and the volumes of deposited/eroded material. The results lead to the identification of topographical variations and geomorphological processes that occurred in response to the variation in eruptive intensity. The joint exploitation of space-borne and ground-based Differential and Multi Temporal SAR Interferometry (InSAR and MT-InSAR) measurements revealed deformation phenomena affecting the volcano edifice, and in particular the Sciara del Fuoco flank.</p><p>The presented results demonstrate the effectiveness of the joint exploitation of multi-temporal DEMs, HSR optical imagery, and InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the slope phenomena in volcanic areas.</p><p>This work was financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers – Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department".</p>


2020 ◽  
Vol 109 (8) ◽  
pp. 2643-2658 ◽  
Author(s):  
Daniele Casalbore ◽  
Flavio Passeri ◽  
Paolo Tommasi ◽  
Luca Verrucci ◽  
Alessandro Bosman ◽  
...  

2020 ◽  
Author(s):  
Massimo Orazi ◽  
Flora Giudicepietro ◽  
Carmen López ◽  
Giovanni Macedonio ◽  
Salvatore Alparone ◽  
...  

<p>In summer 2019, two paroxysmal explosions occurred in Stromboli. The first one occurred on July 3, when the Strombolian ordinary eruptive activity did not show a significant intensification. The explosion formed an eruptive column more than 3 km high. A pyroclastic flow ran down the “Sciara del Fuoco” slope causing a victim and some injuries. Moreover, the pyroclastic flow spread over the sea surface for about one kilometer. On August 28, a second paroxysmal explosion occurred, similar to the previous one. Also in this case the eruption formed an eruptive column of more than 3 km and a pyroclastic flow that expanded along the “Sciara del Fuoco” slope and traveled about 1 km on the sea surface. In the period between the two paroxysms, effusive activity occurred from the summit crater area. The eruptive phase of summer 2019, which began with the paroxysm of 3 July, was not preceded by significant changes in the routinely monitored parameters, such as the hourly frequency (daily average) of the VLP events (typical of Stromboli) and the amplitude of the seismic signal (RSAM). For this reason, we have analyzed the seismic and dilatometric data, which were recorded by the INGV geophysical network in the period November 2018 - September 2019, focusing our attention on other parameters that can give indications on the activity state of the volcano. In particular, we analyzed the data of the broadband seismic stations, equipped with the Guralp CMG40T sensors, and the data of one Sacks-Evertson borehole strainmeter. We defined the "VLP size", which takes into account the waveform of the VLP events, in terms of both amplitude and duration. We also applied time varying Fractal Dimension (FD) analysis to the seismograms of a seismic station close to the crater area and we analyzed the polarization of the same signal. We carried out the polarization analysis both without applying a filter and by filtering the seismic signal in the typical frequency bands of the Stromboli volcanic tremor (1-3 Hz) and of the VLPs (0.5-0.05 Hz). We found that the "VLP size", the FD and the polarization parameters showed significant changes about one month before the paroxysm of July 3. In the short term, we applied an appropriately tuned STA/LTA algorithm to the data of the borehole strainmeter, which is installed on the island at about 2km from the craters, and we obtained an automatic detection of the paroxysmal events 10 and 7.5 minutes before the explosion of July 3 and August 28, respectively.</p>


2020 ◽  
Author(s):  
Filippo Zaniboni ◽  
Gianluca Pagnoni ◽  
Glauco Gallotti ◽  
Stefano Tinti ◽  
Alberto Armigliato

<p>The recent paroxysmal crisis occurring on the island of Stromboli (Tyrrhenian Sea, Italy), manifesting into two main events during summer 2019 (3<sup>rd</sup> July and 28<sup>th</sup> August), renovated the attention on the possibility of tsunami generation induced by volcanic activity. The Stromboli edifice is characterized by the Sciara del Fuoco scar on its north-western flank channeling most of the material ejected from the crater to the sea.</p><p>In this area, in December 2002, two landslides (the first submarine, the second subaerial) triggered large waves affecting the whole coast of the island, causing severe damages but fortunately no casualties, due to the non-touristic period. The tsunami rapidly dissipated with distance, being observed in Panarea (20 km south-east of Stromboli), as is typical of non-seismic tsunamigenic sources. A similar occurrence during summer would have resulted into dramatic consequences, especially along the Stromboli coasts.</p><p>In this study, the tsunamigenic potential associated with destabilized mass along Stromboli flanks is evaluated by means of numerical, in-house developed, codes with the aim of providing insights on the tsunami hazard along the coasts of Stromboli, of the surrounding Aeolian archipelago and in general in a larger domain covering the southern coasts of Tyrrhenian Sea as well.</p>


2020 ◽  
Author(s):  
Claudio De Luca ◽  
Federico Di Traglia ◽  
Vincenzo De Novellis ◽  
Carmen Esposito ◽  
Teresa Nolesini ◽  
...  

<p>In this paper, we present the activities relevant to the microwave monitoring of the Stromboli volcano ground deformation, performed by IREA-CNR (Institute for the Electromagnetic Sensing of the Environment) and UNIFI (University of Florence) as Centres of Competence for the Italian Civil Protection Department.</p><p>The availability of Synthetic Aperture Radar (SAR) system provides, among several techniques, accurate information on the volcano morphology and deformation, thus allowing us to understand the on-going volcanic changes. In this work, we present the results of a back-analysis (from 2015) of the volcano behaviour in terms of ground deformation and an insight on the volcano crisis occurred from July 3 2019, by using Differential Interferometry SAR (DInSAR) measurements.</p><p>The generated DInSAR results are both satellite and ground based. In particular, we show the displacement time series obtained with Sentinel-1 data acquired from March 2015 to October 2019 over the whole island and from ascending and descending orbits, and the displacement estimated with a Ground-Based SAR placed for the Sciara del Fuoco and summit craters sensing.</p><p>Moreover, the combination of the deformation measurements retrieved with both monitoring systems, which are characterized by independent acquisition geometries, allowed us to partially reconstruct a 3D deformation field of Sciara del Fuoco area.</p><p>Finally, we show the preliminary result of a test about an operational monitoring service based on new methodologies for the processing of airborne SAR data, aimed at evaluating its relevance for Civil Protection purposes in volcanic risk context.</p><p><strong> </strong></p><p>This work is supported by the 2019-2021 IREA-CNR and Italian Civil Protection Department agreement, and by the 2019-2021 UNIFI and Italian Civil Protection Department agreement.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 438 ◽  
Author(s):  
Federico Di Traglia ◽  
Alessandro Fornaciai ◽  
Massimiliano Favalli ◽  
Teresa Nolesini ◽  
Nicola Casagli

The geomorphological evolution of the volcanic Island of Stromboli (Italy) between July 2010 and June 2019 has been reconstructed by using multi-temporal, multi-platform remote sensing data. Digital elevation models (DEMs) from PLÉIADES-1 tri-stereo images and from Light Detection and Ranging (LiDAR) acquisitions allowed for topographic changes estimation. Data were comprised of high-spatial-resolution (QUICKBIRD) and moderate spatial resolution (SENTINEL-2) satellite images that allowed for the mapping of areas that were affected by major lithological and morphological changes. PLÉIADES tri-stereo and LiDAR DEMs have been quantitatively and qualitatively compared and, although there are artefacts in the smaller structures (e.g., ridges and valleys), there is still a clear consistency between the two DEMs for the larger structures (as the main valleys and ridges). The period between July 2010 and May 2012 showed only minor changes consisting of volcanoclastic sedimentation and some overflows outside the crater. Otherwise, between May 2012 and May 2017, large topographic changes occurred that were related to the emplacement of the 2014 lava flow in the NE part of the Sciara del Fuoco and to the accumulation of a volcaniclastic wedge in the central part of the Sciara del Fuoco. Between 2017 and 2019, minor changes were again detected due to small accumulation next to the crater terrace and the erosion in lower Sciara del Fuoco.


Sign in / Sign up

Export Citation Format

Share Document