ossification sequence
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 71 ◽  
pp. 645-667
Author(s):  
George M. T. Mattox ◽  
Kevin W. Conway

Miniaturization, the evolution of extremely small adult body size, is a common phenomenon across the lineages of freshwater fishes, especially in the Neotropics where over 200 species are considered miniature (≤26 mm in standard length [SL]). Close to 30% of all miniature Neotropical freshwater fishes belong to the family Characidae, several of which are of uncertain phylogenetic placement within the family. We investigate the skeletal anatomy of Tucanoichthys tucano, a species of uncertain phylogenetic position from the upper Rio Negro basin, reaching a maximum known size of 16.6 mm SL. The skeleton of Tucanoichthys is characterized by the complete absence of ten skeletal elements and marked reduction in size and/or complexity of others, especially those elements associated with the cephalic latero-sensory canal system. Missing elements in the skeleton of Tucanoichthys include those that develop relatively late in the ossification sequence of the non-miniature characiform Salminus brasiliensis, suggesting that their absence in Tucanoichthys can be explained by a simple scenario of developmental truncation. A number of the reductions in the skeleton of Tucanoichthys are shared with other miniature characiforms, most notably species of Priocharax and Tyttobrycon, the latter a putative close relative of Tucanoichthys based on molecular data.



2021 ◽  
Vol 9 ◽  
Author(s):  
Christopher S. Rose

Skeleton plays a huge role in understanding how vertebrate animals have diversified in phylogeny, ecology and behavior. Recent evo-devo research has used ossification sequences to compare skeletal development among major groups, to identify conserved and labile aspects of a sequence within a group, to derive ancestral and modal sequences, and to look for modularity based on embryonic origin and type of bone. However, questions remain about how to detect and order bone appearances, the adaptive significance of ossification sequences and their relationship to adult function, and the utility of categorizing bones by embryonic origin and type. Also, the singular focus on bone appearances and the omission of other tissues and behavioral, ecological and life history events limit the relevance of such analyses. Amphibians accentuate these concerns because of their highly specialized biphasic life histories and the exceptionally late timing, and high variability of their ossification sequences. Amphibians demonstrate a need for a whole-animal, whole-ontogeny approach that integrates the entire ossification process with physiology, behavior and ecology. I discuss evidence and hypotheses for how hormone mediation and calcium physiology might elicit non-adaptive variability in ossification sequence, and for adaptive strategies to partition larval habitats using bone to offset the buoyancy created by lung use. I also argue that understanding plasticity in ossification requires shifting focus away from embryonic development and adult function, and toward postembryonic mechanisms of regulating skeletal growth, especially ones that respond directly to midlife environments and behaviors.



2018 ◽  
Author(s):  
Michel Laurin ◽  
Océane Lapauze ◽  
David Marjanović

AbstractThe origin of extant amphibians has been studied using several sources of data and methods, including phylogenetic analyses of morphological data, molecular dating, stratigraphic data, and integration of ossification sequence data, but a consensus about their affinities with other Paleozoic tetrapods has failed to emerge. We have compiled five datasets to assess the relative support for six competing hypotheses about the origin of extant amphibians: a monophyletic origin among temnospondyls, a monophyletic origin among lepospondyls, a diphyletic origin among both temnospondyls and lepospondyls, a diphyletic origin among temnospondyls alone, and two variants of a triphyletic origin, in which anurans and urodeles come from different temnospondyl taxa while caecilians come from lepospondyls and are either closer to anurans and urodeles or to amniotes. Our datasets comprise ossification sequences of up to 107 terminal taxa and up to eight cranial bones, and up to 65 terminal taxa and up to seven appendicular bones, respectively. Among extinct taxa, only two or three temnospondyl can be analyzed simultaneously for cranial data, but this is not an insuperable problem because each of the six tested hypotheses implies a different position of temnospondyls and caecilians relative to other sampled taxa. For appendicular data, more extinct taxa can be analyzed, including some lepospondyls and the finned tetrapodomorph Eusthenopteron, in addition to temnospondyls. The data are analyzed through maximum likelihood, and the AICc (corrected Akaike Information Criterion) weights of the six hypotheses allow us to assess their relative support. By an unexpectedly large margin, our analyses of the cranial data support a monophyletic origin among lepospondyls; a monophyletic origin among temnospondyls, the current near-consensus, is a distant second. All other hypotheses are exceedingly unlikely according to our data. Surprisingly, analysis of the appendicular data supports triphyly of extant amphibians within a clade that unites lepospondyls and temnospondyls, contrary to all phylogenies based on molecular data and recent trees based on paleontological data, but this conclusion is not very robust.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4525 ◽  
Author(s):  
Angélica Arenas-Rodríguez ◽  
Juan Francisco Rubiano Vargas ◽  
Julio Mario Hoyos

Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included ossification sequences. Using differential staining techniques, we observe and describe differences and similarities of cranial and postcranial development in two hylid species,Scinax ruber(Scinaxinae) andDendropsophus labialis(Hylinae), providing new data of ontogenetic studies in these Colombian species. We examined tadpoles raining from Gosner Stages 25 to 45. We found differences between species in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and gill apparatus. In both species, the first elements to ossify were the atlas and transverse processes of the vertebral column and the parasphenoid. Both species exhibited suprascapular processes as described in other hylids. Although the hylids comprise a large group (over 700 species), postcranial ossification sequence is only known for 15 species. Therefore, the descriptions of the skeletal development and ossification sequences provided herein will be useful for future analyses of heterochrony in the group.



2017 ◽  
Author(s):  
Angélica Arenas Rodríguez ◽  
Juan Francisco Rubiano ◽  
Julio Mario Hoyos

Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included Colombian species. Using different staining techniques, we describe the cranial and poscranial elements development in two hylid species, Scinax ruber and Dendropsophus labialis, providing new data for more comprehensive ontogenetic studies in Neotropical frogs. We examined specimens from Gosner stages 25 to 45. We found differences in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and the gill apparatus. In the ossification sequence, one of the first elements to ossify were the transverse process of spinal column and atlas in both species, and the parasphenoid in the skull. New descriptions of skeletal development and ossification sequences of larval stages of these two species, especially data concerning the postcranium, contribute with useful information for analysis of sequential heterochrony, because although the hylids are widely known, there are few works (15 of 700 species) about ossification sequence that include the whole skeleton.



2017 ◽  
Author(s):  
Angélica Arenas Rodríguez ◽  
Juan Francisco Rubiano ◽  
Julio Mario Hoyos

Although comparative studies of anuran ontogeny have provided new data on heterochrony in the life cycles of frogs, most of them have not included Colombian species. Using different staining techniques, we describe the cranial and poscranial elements development in two hylid species, Scinax ruber and Dendropsophus labialis, providing new data for more comprehensive ontogenetic studies in Neotropical frogs. We examined specimens from Gosner stages 25 to 45. We found differences in the infrarostral and suprarostral cartilages, optic foramen, planum ethmoidale, and the gill apparatus. In the ossification sequence, one of the first elements to ossify were the transverse process of spinal column and atlas in both species, and the parasphenoid in the skull. New descriptions of skeletal development and ossification sequences of larval stages of these two species, especially data concerning the postcranium, contribute with useful information for analysis of sequential heterochrony, because although the hylids are widely known, there are few works (15 of 700 species) about ossification sequence that include the whole skeleton.



Author(s):  
Lionel Hautier ◽  
Cyril Charles ◽  
Robert J. Asher ◽  
Stephen J. Gaunt


2013 ◽  
Vol 15 (5) ◽  
pp. 344-364 ◽  
Author(s):  
Sean M. Harrington ◽  
Luke B. Harrison ◽  
Christopher A. Sheil


Sign in / Sign up

Export Citation Format

Share Document