chlorinated dibenzofurans
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 0)

H-INDEX

20
(FIVE YEARS 0)

2013 ◽  
Vol 21 (15) ◽  
pp. 4628-4633 ◽  
Author(s):  
Haruhisa Kikuchi ◽  
Yuzuru Kubohara ◽  
Van Hai Nguyen ◽  
Yasuhiro Katou ◽  
Yoshiteru Oshima

Author(s):  
CJ Smith ◽  
DC Sykes ◽  
DW Cantrell ◽  
SC Moldoveanu

AbstractThe presence of dioxin-like compounds, such as chlorinated dibenzodioxins, chlorinated dibenzofurans and chlorinated biphenyls, in mainstream cigarette smoke has been investigated for seven cigarette brands covering a range of ‘tar’ deliveries from 1 mg to 14 mg. Adjusted per milligram of total particulate matter (TPM), ultra-light cigarettes had the highest concentrations of toxic equivalents (TEQ) of 10 fg/mg TPM. As the ‘tar’ delivery increased, lower concentration values were found in lights and full-flavor cigarettes. Calculated on the basis of a pack of twenty cigarettes, mainstream smoke from the ultra-lights and lights products produced values around 200 fg TEQ, and the full-flavor brand produced 575 fg TEQ per pack. Levels of TEQ from dioxin-like compounds in the tobacco section of four cigarette brands did not show significant differences and were similar to previous literature findings.


2001 ◽  
Vol 67 (8) ◽  
pp. 3610-3617 ◽  
Author(s):  
Hiroshi Habe ◽  
Jin-Sung Chung ◽  
Jong-Hoon Lee ◽  
Kano Kasuga ◽  
Takako Yoshida ◽  
...  

ABSTRACT Two kinds of bacteria having different-structured angular dioxygenases—a dibenzofuran (DF)-utilizing bacterium,Terrabacter sp. strain DBF63, and a carbazole (CAR)-utilizing bacterium, Pseudomonas sp. strain CA10—were investigated for their ability to degrade some chlorinated dibenzofurans (CDFs) and chlorinated dibenzo-p-dioxins (CDDs) (or, together, CDF/Ds) using either wild-type strains or recombinant Escherichia coli strains. First, it was shown that CAR 1,9a-dioxygenase (CARDO) catalyzed angular dioxygenation of all mono- to triCDF/Ds investigated in this study, but DF 4,4a-dioxygenase (DFDO) did not degrade 2,7-diCDD. Secondly, degradation of CDF/Ds by the sets of three enzymes (angular dioxygenase, extradiol dioxygenase, and meta-cleavage compound hydrolase) was examined, showing that these enzymes in both strains were able to convert 2-CDF to 5-chlorosalicylic acid but not other tested substrates to the corresponding chlorosalicylic acid (CSA) or chlorocatechol (CC). Finally, we tested the potential of both wild-type strains for cooxidation of CDF/Ds and demonstrated that both strains degraded 2-CDF, 2-CDD, and 2,3-diCDD to the corresponding CSA and CC. We investigated the sites for the attack of angular dioxygenases in each CDF/D congener, suggesting the possibility that the angular dioxygenation of 2-CDF, 2-CDD, 2,3-diCDD, and 1,2,3-triCDD (10 ppm each) by both DFDO and CARDO occurred mainly on the nonsubstituted aromatic nuclei.


2000 ◽  
Vol 46 (5) ◽  
pp. 397-409 ◽  
Author(s):  
David C Bressler ◽  
Phillip M Fedorak

Fluorene and its three heteroatomic analogs, dibenzofuran, dibenzothiophene, and carbazole, are environmental contaminants in areas impacted by spills of creosote. In addition, dibenzofuran has been used as an insecticide, and it is formed from the photolysis of chlorinated biphenyl ethers. Many biodegradation studies of dibenzofuran have considered it as a model for chlorinated dibenzofurans, which are of greater environmental concern. This paper reviews the bacterial degradation of fluorene and its analogs. These compounds are susceptible to three different modes of initial oxidation: (i) the naphthalene-like attack, in which one of the aromatic rings is oxidized to a dihydrodiol; (ii) an angular dioxygenase attack, in which the carbon bonded to the methylene group in fluorene or to the heteroatoms in the analogs, and the adjacent carbon in the aromatic ring are both oxidized; and (iii) the five-membered ring attack, in which the methylene carbon atom in fluorene or the sulfur atom in dibenzothiophene is oxidized. The metabolites, enzymology, and genetics of these transformation are summarized. Literature data are presented, indicating that the electronegativity of the atom connecting the two aromatic rings influences the attack of the angular dioxygenase. In dibenzofuran and carbazole, the connecting atoms, O and N respectively, have high electronegativities, and these compounds serve as substrates for angular dioxygenases. In contrast, the connecting atoms in dibenzothiophene and fluorene, S and C respectively, have lower electronegativities, and these atoms must be oxidized before the angular dioxygenases attack these compounds.Key words: angular dioxygenase, carbazole, dibenzofuran, dibenzothiophene, fluorene.


Sign in / Sign up

Export Citation Format

Share Document