redundant representation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Alexander Pavlov

We substantiate the structure of the efficient numerical axis segment an active experiment on which allows finding estimates of the coefficients fornonlinear terms of univariate polynomial regression with high accuracy using normalized orthogonal Forsyth polynomials with a sufficiently smallnumber of experiments. For the case when an active experiment can be executed on a numerical axis segment that does not satisfy these conditions, wesubstantiate the possibility of conducting a virtual active experiment on an efficient interval of the numerical axis. According to the results of the experiment, we find estimates for nonlinear terms of the univariate polynomial regression under research as a solution of a linear equalities system withan upper non-degenerate triangular matrix of constraints. Thus, to solve the problem of estimating the coefficients for nonlinear terms of univariatepolynomial regression, it is necessary to choose an efficient interval of the numerical axis, set the minimum required number of values of the scalarvariable which belong to this segment and guarantee a given value of the variance of estimates for nonlinear terms of univariate polynomial regressionusing normalized orthogonal polynomials of Forsythe. Next, it is necessary to find with sufficient accuracy all the coefficients of the normalized orthogonal polynomials of Forsythe for the given values of the scalar variable. The resulting set of normalized orthogonal polynomials of Forsythe allows us to estimate with a given accuracy the coefficients of nonlinear terms of univariate polynomial regression in an arbitrary limited active experiment: the range of the scalar variable values can be an arbitrary segment of the numerical axis. We propose to find an estimate of the constant and ofthe coefficient at the linear term of univariate polynomial regression by solving the linear univariate regression problem using ordinary least squaresmethod in active experiment conditions. Author and his students shown in previous publications that the estimation of the coefficients for nonlinearterms of multivariate polynomial regression is reduced to the sequential construction of univariate regressions and the solution of the correspondingsystems of linear equalities. Thus, the results of the paper qualitatively increase the efficiency of finding estimates of the coefficients for nonlinearterms of multivariate polynomial regression given by a redundant representation.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-23
Author(s):  
Hwajeong Seo ◽  
Pakize Sanal ◽  
Reza Azarderakhsh

We present an optimized implementation of the post-quantum Supersingular Isogeny Key Encapsulation (SIKE) for 32-bit ARMv7-A processors supporting NEON engine (i.e., SIMD instruction). Unlike previous SIKE implementations, finite field arithmetic is efficiently implemented in a redundant representation, which avoids carry propagation and pipeline stall. Furthermore, we adopted several state-of-the-art engineering techniques as well as hand-crafted assembly implementation for high performance. Optimized implementations are ported to Microsoft SIKE library written in “a non-redundant representation” and evaluated in high-end 32-bit ARMv7-A processors, such as ARM Cortex-A5, A7, and A15. A full key-exchange execution of SIKEp503 is performed in about 109 million cycles on ARM Cortex-A15 processors (i.e., 54.5 ms @2.0 GHz), which is about 1.58× faster than previous state-of-the-art work presented in CHES’18.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1644
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi ◽  
...  

An efficient near-to-far-field transformation (NTFFT) technique, wherein the near-field (NF) measurements are acquired along a planar spiral with a uniform step to make the control of the involved positioners easier, is developed in this article. Such a technique is tailored for quasi-spherical, i.e., volumetric, antennas under test and makes use of a reduced number of NF data. An effective two-dimensional sampling interpolation algorithm, allowing the accurate reconstruction of the input NF data for the standard NTFFT with plane-rectangular scan, is obtained by setting the spiral step equal to the sample spacing required for interpolating along a radial line according to the spatial bandlimitation properties of electromagnetic fields, and by properly developing a non-redundant representation along such a spiral. Tests results are reported to demonstrate that the proposed NTFFT technique retains the same accuracy as the standard plane-rectangular one.


2020 ◽  
Vol 124 (2) ◽  
Author(s):  
Elena Agliari ◽  
Francesco Alemanno ◽  
Adriano Barra ◽  
Martino Centonze ◽  
Alberto Fachechi

2017 ◽  
Vol 23 (10) ◽  
pp. 10325-10328
Author(s):  
Kee-Won Kim ◽  
Hyun-Ho Lee ◽  
Seung-Hoon Kim

Sign in / Sign up

Export Citation Format

Share Document