scalar variable
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Alexander Pavlov

We substantiate the structure of the efficient numerical axis segment an active experiment on which allows finding estimates of the coefficients fornonlinear terms of univariate polynomial regression with high accuracy using normalized orthogonal Forsyth polynomials with a sufficiently smallnumber of experiments. For the case when an active experiment can be executed on a numerical axis segment that does not satisfy these conditions, wesubstantiate the possibility of conducting a virtual active experiment on an efficient interval of the numerical axis. According to the results of the experiment, we find estimates for nonlinear terms of the univariate polynomial regression under research as a solution of a linear equalities system withan upper non-degenerate triangular matrix of constraints. Thus, to solve the problem of estimating the coefficients for nonlinear terms of univariatepolynomial regression, it is necessary to choose an efficient interval of the numerical axis, set the minimum required number of values of the scalarvariable which belong to this segment and guarantee a given value of the variance of estimates for nonlinear terms of univariate polynomial regressionusing normalized orthogonal polynomials of Forsythe. Next, it is necessary to find with sufficient accuracy all the coefficients of the normalized orthogonal polynomials of Forsythe for the given values of the scalar variable. The resulting set of normalized orthogonal polynomials of Forsythe allows us to estimate with a given accuracy the coefficients of nonlinear terms of univariate polynomial regression in an arbitrary limited active experiment: the range of the scalar variable values can be an arbitrary segment of the numerical axis. We propose to find an estimate of the constant and ofthe coefficient at the linear term of univariate polynomial regression by solving the linear univariate regression problem using ordinary least squaresmethod in active experiment conditions. Author and his students shown in previous publications that the estimation of the coefficients for nonlinearterms of multivariate polynomial regression is reduced to the sequential construction of univariate regressions and the solution of the correspondingsystems of linear equalities. Thus, the results of the paper qualitatively increase the efficiency of finding estimates of the coefficients for nonlinearterms of multivariate polynomial regression given by a redundant representation.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2449
Author(s):  
Flaviano Battelli ◽  
Michal Fečkan

We study persistence of periodic solutions of perturbed slowly varying discontinuous differential equations assuming that the unperturbed (frozen) equation has a non singular periodic solution. The results of this paper are motivated by a result of Holmes and Wiggins where the authors considered a two dimensional Hamiltonian family of smooth systems depending on a scalar variable which is the solution of a singularly perturbed equation.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 786 ◽  
Author(s):  
Bruno Adolfo Buffa ◽  
Damián Knopoff ◽  
Germán Torres

This paper deals with the modeling of wealth distribution considering a society with non-constant population and non-conservative wealth trades. The modeling approach is based on the kinetic theory of active particles, where individuals are distinguished by a scalar variable (the activity) which expresses their social state. A qualitative analysis of the model focusing on asymptotic behaviors and measurement of inequality through the Gini coefficient is presented. Finally, some specific case-studies are proposed in order to carry out numerical experiments to validate our model, characterize societies and investigate emerging behaviors.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 526 ◽  
Author(s):  
Arak M. Mathai ◽  
Hans J. Haubold

A real scalar variable integral is known in the literature by different names in different disciplines. It is basically a Bessel integral called specifically Krätzel integral. An integral transform with this Krätzel function as kernel is known as Krätzel transform. This article examines some mathematical properties of Krätzel integral, its connection to Mellin convolutions and statistical distributions, its computable representations, and its extensions to multivariate and matrix-variate cases, in both the real and complex domains. An extension in the pathway family of functions is also explored.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750051 ◽  
Author(s):  
Damian A. Knopoff ◽  
Juan M. Sánchez Sansó

This paper presents a mathematical model for bacterial growth, mutations, horizontal transfer and development of antibiotic resistance. The model is based on the so-called kinetic theory for active particles that is able to capture the main complexity features of the system. Bacterial and immune cells are viewed as active particles whose microscopic state is described by a scalar variable. Particles interact among them and the temporal evolution of the system is described by a generalized distribution function over the microscopic state. The model is derived and tested in a couple of case studies in order to confirm its ability to describe one of the most fundamental problems of modern medicine, namely bacterial resistance to antibiotics.


Sign in / Sign up

Export Citation Format

Share Document