fingerprinting attack
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 16)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hongcheng Zou ◽  
Ziling Wei ◽  
Jinshu Su ◽  
Baokang Zhao ◽  
Yusheng Xia ◽  
...  

Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features as input, thus inducing tremendous feature engineering work. However, we show the other alternative. That is, we present Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. They are produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above 90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low false positive rate (FPR) in all evaluations, which outperforms the other attacks. These results highlight that it is meaningful and possible to explore new features to improve the accuracy of WFP attacks.


2021 ◽  
Author(s):  
Tatsuya Okazaki ◽  
Hiroya Kato ◽  
Shuichiro Haruta ◽  
Iwao Sasase

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Maohua Guo ◽  
Jinlong Fei

Website fingerprinting attacks allow attackers to determine the websites that users are linked to, by examining the encrypted traffic between the users and the anonymous network portals. Recent research demonstrated the feasibility of website fingerprinting attacks on Tor anonymous networks with only a few samples. Thus, this paper proposes a novel small-sample website fingerprinting attack method for SSH and Shadowsocks single-agent anonymity network systems, which focuses on analyzing homology relationships between website fingerprinting. Based on the latter, we design a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) attack classification model that achieves 94.8% and 98.1% accuracy in classifying SSH and Shadowsocks anonymous encrypted traffic, respectively, when only 20 samples per site are available. We also highlight that the CNN-BiLSTM model has significantly better migration capabilities than traditional methods, achieving over 90% accuracy when applied on a new set of monitored sites with only five samples per site. Overall, our experiments demonstrate that CNN-BiLSTM is an efficient, flexible, and robust model for website fingerprinting attack classification.


2021 ◽  
Vol 198 ◽  
pp. 108298
Author(s):  
Mantun Chen ◽  
Yongjun Wang ◽  
Hongzuo Xu ◽  
Xiatian Zhu

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Maohua Guo ◽  
Jinlong Fei ◽  
Yitong Meng

By website fingerprinting (WF) technologies, local listeners are enabled to track the specific website visited by users through an investigation of the encrypted traffic between the users and the Tor network entry node. The current triplet fingerprinting (TF) technique proved the possibility of small sample WF attacks. Previous research methods only concentrate on extracting the overall features of website traffic while ignoring the importance of website local fingerprinting characteristics for small sample WF attacks. Thus, in the present paper, a deep nearest neighbor website fingerprinting (DNNF) attack technology is proposed. The deep local fingerprinting features of websites are extracted via the convolutional neural network (CNN), and then the k-nearest neighbor (k-NN) classifier is utilized to classify the prediction. When the website provides only 20 samples, the accuracy can reach 96.2%. We also found that the DNNF method acts well compared to the traditional methods in coping with transfer learning and concept drift problems. In comparison to the TF method, the classification accuracy of the proposed method is improved by 2%–5% and it is only dropped by 3% when classifying the data collected from the same website after two months. These experiments revealed that the DNNF is a more flexible, efficient, and robust website fingerprinting attack technology, and the local fingerprinting features of websites are particularly important for small sample WF attacks.


Author(s):  
Qilei Yin ◽  
Zhuotao Liu ◽  
Qi Li ◽  
Tao Wang ◽  
Qian Wang ◽  
...  

Author(s):  
Nitin Naik ◽  
Paul Jenkins ◽  
Nick Savage ◽  
Longzhi Yang

Abstract A honeypot is a concealed security system that functions as a decoy to entice cyberattackers to reveal their information. Therefore, it is essential to disguise its identity to ensure its successful operation. Nonetheless, cyberattackers frequently attempt to uncover these honeypots; one of the most effective techniques for revealing their identity is a fingerprinting attack. Once identified, a honeypot can be exploited as a zombie by an attacker to attack others. Several effective techniques are available to prevent a fingerprinting attack, however, that would be contrary to the purpose of a honeypot, which is designed to interact with attackers to attempt to discover information relating to them. A technique to discover any attempted fingerprinting attack is highly desirable, for honeypots, while interacting with cyberattackers. Unfortunately, no specific method is available to detect and predict an attempted fingerprinting attack in real-time due to the difficulty of isolating it from other attacks. This paper presents a computational intelligence enabled honeypot that is capable of discovering and predicting an attempted fingerprinting attack by using a Principal components analysis and Fuzzy inference system. This proposed system is successfully tested against the five popular fingerprinting tools Nmap, Xprobe2, NetScanTools Pro, SinFP3 and Nessus.


Sign in / Sign up

Export Citation Format

Share Document